16.02.2021 г.

Распознавание штрихкода: в теории легко, а как в реальной жизни?

Проблема распознавания штрихкодов сегодня очень актуальна в связи с непрерывным развитием системы маркировки и системы оплаты товаров по QR-коду в 2021 году.

Распознавание штрихкода: в теории легко, а как в реальной жизни

Штрихкод, или баркод, безусловно, является важным изобретением человечества, которое изменило течение нашей жизни. В одной из своих статей мы уже рассказывали, как эволюционировал этот способ кодирования информации.

Не будем углубляться в техническую часть, а рассмотрим существующие проблемы при внедрении технологии распознавания баркодов. Действительно, откуда могут возникнуть проблемы, если штрихкодирование – это такой особый способ кодирования данных, который как раз призван обеспечить быстрое и беспроблемное считывание данных машиной? Все алгоритмы декодирования баркодов «разжёваны» до самых мелочей. Задача декодирования баркодов отлично решается без использования каких-либо нейронных сетей и прочих «страшилок» нашего века. Кажется, что технология распознавания баркодов – это тот «космодром», с которого должны взлетать в счастливое будущее большое количество opensource-библиотек.

Оказывается, дело обстоит не совсем так. Первый звоночек о «негодности» всего бесплатного для решения задачи распознавания баркодов прилетел к нам в виде очередного запроса от нашего давнего клиента – одного коммерческого банка (из топ-10), технологичности которого могут позавидовать многие. Коллеги продемонстрировали, что популярные бесплатные библиотеки категорически не справляются даже с QR-кодами. Про коды типа AZTEC даже говорить не приходится (этот вид баркодов, который встречается на платежках, визуально похож на QR-код, но при этом кардинально отличается от него по сложности декодирования).

Мы немного погрузились в задачу и очень быстро поняли, что практически все библиотеки «сдали свои позиции» на полпути, еще не дойдя даже непосредственно до распознавания. Ведь наибольшую трудность в задаче представляют точная локализация и ориентация распознаваемого штрихкода. На первый взгляд кажется, что задача должна решиться «в два счета», так как у многих штрихкодов в структуре присутствуют специальные черно-белые квадратные «мишени» для локализации. Но мы-то с вами знаем, что задача цветовой константности, решение которой как раз и позволяет понять, какие объекты каким образом окрашены, совсем непроста. Да и мишени, кстати, не всегда черно-белые и даже не всегда квадратные (дизайнерские решения, эксплуатирующие разные цвета и форму, очень мешают задаче распознавания баркода).

Распознавание штрихкода: в теории легко, а как в реальной жизни

Чтобы окончательно проникнуться сложностью задачи распознавания штрихкодов, представьте, какие артефакты возникают при движении камеры, фотографировании в темноте со вспышкой, пересъемке штрихкода с монитора, попытке распознать заламинированный штрихкод. А еще представьте, как выглядит штрихкод с огромным количеством данных внутри (можно даже не представлять, а просто взять квитанцию оплаты, например, за детский садик).

Распознавание штрихкода: в теории легко, а как в реальной жизни

Кстати говоря, мы уже провели первый этап исследований задачи поиска штрихкода на изображении. Ознакомиться с нашими статьями в 2020 году по тематике можно здесь и здесь.

Есть еще одна причина, почему мы не остались в стороне от решения проблемы распознавания штрихкодов. В нашей стране семимильными шагами развивается технология оплаты по QR-кодам (в подтверждение моих слов смотрите здесь, здесь и здесь). Будучи участниками Глобального договора ООН и ярыми приверженцами ответственного ИИ, мы просто не могли допустить, чтобы рынок не оценил всех преимуществ оплаты по QR из-за фактической неспособности имеющихся бесплатных библиотек распознавания. И не будем забывать про набирающую обороты «Систему маркировки и прослеживаемости товаров». Все это натолкнуло нас на создание модуля распознавания штрихкодов Smart Code Engine.

Чтобы проверить эффективность получившегося решения, мы самостоятельно создали небольшой набор фотографий QR-кодов. Единственное требование – фотографировать баркоды необходимо так, как это делают обычные пользователи. Ниже приводим примеры изображений из нашего датасета.

Распознавание штрихкода: в теории легко, а как в реальной жизни

Как видите, изображения далеки от идеальных. Мы сравнили качество работы Smart Code Engine с двумя популярными opensource-решениями: OpenCV 4.5.1 (библиотека компьютерного зрения с открытым исходным кодом, которую часто применяют при создании системы с ИИ) и Zxing (библиотека с открытым исходным кодом для распознавания баркодов). В таблице ниже представлены результаты:

Распознавание штрихкода: в теории легко, а как в реальной жизни

Как трактовать эти числа? Достаточно просто:

  • OpenCV серьезно проигрывает Zxing по качеству декодирования;
  • Smart Code Engine обеспечивает в 19 раз меньше ошибок, чем Zxing (с OpenCV даже и смысла сравнивать нет).

Возникает вопрос: «А на чем ошибаются рассмотренные системы?» Проведем анализ ошибок только для Smart Code Engine и Zxing. Ниже представлено единственное изображение, на котором ошиблось Smart Code Engine.

Распознавание штрихкода: в теории легко, а как в реальной жизни

Действительно, непростой случай для систем машинного зрения (блики, геометрические искажения, сложный фон). Что же, будем работать дальше и повышать качество распознавания. Кстати, ZXing тоже не справился с этим изображением.

А вот несколько примеров, на чем ошибается ZXing. Тоже не самые простые случаи (серьезные проективные искажения, высокая плотность, сложный фон).

Распознавание штрихкода: в теории легко, а как в реальной жизни

На сегодняшний день Smart Code Engine обеспечивает качественное распознавание одно- и двумерных штрих-кодов из различных счетов и квитанций, включая счета за коммунальные и государственные услуги, налоговых документов и счетов, а также билетов, чеков, счетов-фактур, ценников, плакатов и объявлений. Модуль чтения QR-кодов способен читать инвертированные коды, а также устойчив к любой ориентации. Текущая версия Smart Code Engine поддерживает распознавание QR Code, AZTEC, PDF 417, Data Matrix, codabar, CODE_39, CODE_93, CODE_128, EAN_8, EAN_13, ITF, UPC_A, UPC_E.

Smart Code Engine уже внедрен в мобильные приложения Тинькофф Банка, МКБ, Рокетбанка, СДМ-Банка, Банка «Санкт-Петербург».

Больше информации о программном продукте Smart Code Engine
Smart Code Engine
Распознавание QR и AZTEC

Скачайте мобильное демо приложение и попробуйте Smart Code Engine в действии

    

Наши клиенты

Банк ДОМ.РФ

Банк ДОМ.РФ внедрил инновационную систему распознавания документов при кредитовании

Ренессанс Страхование

Smart Engines является поставщиком решений по сканированию и распознаванию документов для Группы Ренессанс Страхование

ФПК РЖД

ФПК РЖД продает билеты в кассах с помощью ИИ от Smart Engines

Газпромбанк

Газпромбанк планирует обрабатывать заявки на кредит с помощью ИИ от Smart Engines

Заказать продукт

Для заказа решений, получения подробной информации или триал версий заполните приведенную ниже форму, и мы обязательно с Вами свяжемся.