a2 United States Patent

Limonova et al.

US011995152B2

US 11,995,152 B2
May 28, 2024

(10) Patent No.:
45) Date of Patent:

(54) BIPOLAR MORPHOLOGICAL NEURAL
NETWORKS

(71) Applicant: Smart Engines Service, LL.C, Moscow
RU)

(72) Inventors: Elena Evgenyevna Limonova, Moscow
(RU); Dmitry Petrovich Nikolaev,
Moscow (RU); Vladimir Viktorovich
Arlazarov, Moscow (RU)

(73) Assignee: Smart Engines Service, LL.C, Moscow
RU)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 406 days.

(21) Appl. No.: 17/495,628

(22) Filed: Oct. 6, 2021
(65) Prior Publication Data

US 2022/0292312 Al Sep. 15, 2022
(30) Foreign Application Priority Data

Mar. 15, 2021 (RU) e 2021106621

(51) Imt.CL

GO6F 18214 (2023.01)

GO6F 182431 (2023.01)

GO6N 3/04 (2023.01)

GO6N 3/08 (2023.01)

GO6V 20/00 (2022.01)

GO6V 20/62 (2022.01)
(52) US. CL

CPC ... GOGF 18/2148 (2023.01); GOGF 18/2431
(2023.01); GO6N 3/04 (2013.01); GO6N 3/08
(2013.01); GO6V 20/00 (2022.01); GOGV

20/62 (2022.01)

h " " !
1 Train imiia! Neural Network
i

i— Convert Layer 10 BM Layer
i 340
Freeze Converted Layer

| Train Remaining Network
i p

(58) Field of Classification Search
CPC ... GO6F 18/2148; GOGF 18/2431; GO6N 3/04;
GO6N 3/0455; GO6N 3/0464; GO6N
3/048; GO6N 3/08; GO6N 3/082; GO6N
3/09; GO6V 10/774; GO6V 10/778; GO6V
10/82; GO6V 20/00; GO6V 20/62
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2022/0215553 Al* 7/2022 Oakley A61B 5/4824

OTHER PUBLICATIONS

Skoryukina et al., “Real Time Rectangular Document Detection on
Mobile Devices,” Proc. of SPIE vol. 9445 94452A-1, Feb. 2015, 6
pages.

Bulatov et al., “Smart IDReader: Document Recognition in Video
Stream,” 2017 14th IAPR International Conference on Document
Analysis and Recognition, Nov. 2017, IEEE, pp. 39-44.

Abramov et al., “Intelligent telemetry data analysis for diagnosing
of the spacecraft hardware,” Informatsionnye Tekhnologii i
Vychslite’nye Sistemy, 2016, No. 1, 64-75.

(Continued)

Primary Examiner — Zhiyu Lu
(74) Attorney, Agent, or Firm — Procopio, Cory,
Hargreaves & Savitch LLP

(57) ABSTRACT

A bipolar morphological neural network may be generated
by converting an initial neural network by replacing multi-
plication calculations in one or more convolutional layers
with approximations that utilize maximum/minimum and/or
addition/subtraction operations. The remaining part of the
network may be trained after each convolutional layer is
converted.

17 Claims, 7 Drawing Sheets

Select Best BM Network
370

FIG. 3

US 11,995,152 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Avsentiev et al., “Sequential Application of the Hierarchy Analysis
Method and Associative Training of a Neural Network in Exami-
nation Problems,” DOI: 10.14529/mmp170312, Bulletin of the
South Ural State University. Ser. Mathematical Modelling, Pro-
gramming & Computer Software (Bulletin SUSU MMCS) vol. 10,
No. 3, Aug. 2017, pp. 142-147.

Sheshkus et al., “Approach to Recognition of Flexible Form for
Credit Card Expiration Date Recognition as Example,” Proc. of
SPIE vol. 9875 98750R-1, 2015, 5 pages.

Gupta et al., “Deep Learning with Limited Numerical Precision,”
arXiv:1502.02551v1 [es.LG] Feb. 9, 2015, 10 pages.

Denton et al., “Exploiting Linear Structure Within Convolutional
Networks for Efficient Evaluation,” arXiv:1404.0736v2 [cs.CV]
Jun. 9, 2014, 11 pages.

Ilin et al., “Fast Integer Approximations In Convolutional Neural
Networks Using Layer-By-Layer Training,” Proc. of SPIE vol.
10341 103410Q-1, 2017, 5 pages.

Limonova et al., “Convolutional Neural Network Structure Trans-
formations for Complexity Reduction and Speed Improvement,”
ISSN 1054-6618, Pattern Recognition and Image Analysis, 2018,
vol. 28, No. 1, pp. 24-33.

Vanhoucke et al., “Improving the speed of neural networks on
CPUs,” Deep Learning and Unsupervised Feature Learning Work-
shop, 2011, 8 pages.

Ritter et al., “An Introduction to Morphological Neural Networks,”
Proceedings of 13th International Conference on Pattern Recogni-
tion, IEEE, Aug. 6, 2002, 9 pages.

Patterson et al., “Computer Organization and Design The Hardware/
Software Interface,” Revised Fourth Edition, Elsevier Science, Oct.
13, 2011, 919 pages.

Zhou et al.,, “Dorefa-Net: Training Low Bitwidth Convolutional
Neural Networks With Low Bitwidth Gradients,” arXiv:1606.
06160v2 [cs.NE] Jul. 17, 2016, 14 pages.

Courbariaux et al., “Binarized Neural Networks: Training Neural
Networks with Weights and Activations Constrained to +1 or -1,”
arXiv:1602.02830v3 [c¢s.LG] Mar. 17, 2016, 11 pages.

Rastegari et al., “XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks,” arXiv:1603.05279v4 [cs.CV] Aug.
2, 2016, 17 pages.

Zhou et al., “Incremental Network Quantization: Towards Lossless
CNNS With Low-Precision Weights,” arXiv:1702.03044v2 [c¢s.CV]
Aug. 25, 2017, 14 pages.

Choukroun et al., “Low-bit Quantization of Neural Networks for
Efficient Inference,” arXiv:1902.06822v2 [cs.LG] Mar. 25, 2019, 10
pages.

Sussner et al., “Constructive Morphological Neural Networks:
Some Theoretical Aspects and Experimental Results in Classifica-
tion,” Constructive Neural Networks. Studies in Computational
Intelligence, vol. 258, 2009, pp. 123-144.

Ritter et al., “Morphological Perceptrons with Dendritic Structure,”
The IEEE International Conference on Fuzzy Systems, 2003, pp.
1296-1301.

Ritter et al., “Lattice Algebra Approach to Single-Neuron Compu-
tation,” IEEE Transactions on Neural Networks, vol. 14, No. 2, Mar.
2003, pp. 282-295.

Sossa et al., “Efficient training for dendrite morphological neural
networks,” Neurocomputing 131 (2014) 132-142.

Erik Zamora, Humberto Sossa, Dendrite Morphological Neurons
Trained by Stochastic Gradient Descent, Neurocomputing (2017),
doi: 10.1016/j.neucom.2017.04.044, 30 pages.

Mondal et al., “Dense Morphological Network: An Universal Func-
tion Approximator,” arXiv:1901.00109v1 [¢s.LG] Jan. 1, 2019, 14
pages.

LeCun et al., “The MNIST Database of handwritten digits,” MNIST
handwritten digit database, Yann LeCun, Corinna Cortes and Chris
Burges, yann.lecun.com/exdb/mnist/, Mar. 31, 2021, 7 pages.

Wikipedia, “Machine-readable passport,” https://en.wikipedia.org/
wiki/Machine-readable_passport, Mar. 31, 2021, 7 pages.

Chang et al., “A Vision-based Human Action Recognition System
for Moving Cameras Through Deep Learning,” SPML 19: Proceed-
ings of the 2019 2nd International Conference on Signal Processing
and Machine Learning, Nov. 2019 pp. 85-91.

Zhang et al., “Deeper and Wider Siamese Networks for Real-Time
Visual Tracking,” arXiv:1901.01660v3 [c¢s.CV] Mar. 28, 2019, 10
pages.

Li et al.,, “Page Object Detection from PDF Document Images by
Deep Structured Prediction and Supervised Clustering,” 2018 24th
International Conference on Pattern Recognition (ICPR) Beijing,
China, Aug. 20-24, 2018 IEEE, pp. 3627-3632.

Bokovoy, “Automatic control system’s architecture for group of
small unmanned aerial vehicles,” Informatsionnye Tekhnologii i
Vychslite’nye Sistemy, 2018, No. 1, 68-77.

Puybareau et al., “Real-Time Document Detection in Smartphone
Videos,” 2018 IEEE, pp. 1498-1502.

Chernyshova et al., “Two-Step CNN Framework for Text Line
Recognition in Camera-Captured Images,” IEEE vol. 8, 2020, 14
pages.

Strubell et al., “Energy and Policy Considerations for Deep Learn-
ing in NLP,” arXiv:1906.02243v1 [c¢s.CL] Jun. 5, 2019, 6 pages.
Schwartz et al., “Green AL” arXiv:1907.10597v3 [c¢s.CY] Aug. 13,
2019, 12 pages.

Yao et al., “Efficient Implementation of Convolutional Neural
Networks With End to End Integer-Only Dataflow,” 2019 IEEE
International Conference on Multimedia and Expo (ICME), pp.
1780-1785.

Al-Hami et al., “Methodologies of Compressing a Stable Perfor-
mance Convolutional Neural Networks in Image Classification,”
Neural Processing Letters, Jul. 20, 2019, 23 pages.

Sun et al., “Multi-Precision Quantized Neural Networks via Encod-
ing Decomposition of {1, +1}”, arXiv:1905.13389v1 [¢s.CV] May
31, 2019, 10 pages.

Limonova et al., “Special Aspects of Matrix Operation Implemen-
tations for Low-Precision Neural Network Model on the Elbrus
Platform,” Bulletin of the South Ural StateUniversity. Ser. Math-
ematical Modelling, Programming & ComputerSoftware (Bulletin
SUSU MMCS), 2020, vol. 13, No. 1, pp. 118-128.

Morcel et al., “FeatherNet: An Accelerated Convolutional Neural
Network Design for Resource-constrained FPGAs,” ACM Trans-
actions on Reconfigurable Technology and Systems, vol. 12, No. 2,
Article 6. Pub. date: Mar. 2019, 27 pages.

Li et al, “Simulate-the-hardware: Training Accurate Binarized
Neural Networks for Low-Precision Neural Accelerators,” ASPDAC
’19, Jan. 21-24, 2019, Tokyo, Japan, 6 pages.

Gerardo Hernandez, Erik Zamora, Humberto Sossa, German Tellez,
Federico Furlan, Hybrid neural networks for big data classification,
Neurocomputing (2019), https://doi.org/10.1016/j.neucom.2019.08.
095, 36 pages.

Mellouli et al., “Morphological Convolutional Neural Network
Architecture for Digit Recognition,” IEEE Transactions on Neural
Networks and Learning Systems, 2019, 10 pages.

Elhoushi et al., “DeepShift: Towards Multiplication-Less Neural
Networks,” arXiv:1905.13298v2 [¢s.LG] Jun. 6, 2019, 11 pages.
Chen et al., “AdderNet: DoWe Really Need Multiplications in Deep
Learning?,” arXiv:1912.13200v1 [¢s.CV] Dec. 31, 2019, 10 pages.
Limonova et al., “Bipolar Morphological Neural Networks: Con-
volution Without Multiplication,” Computer Science, Neural and
Evolutionary Computing, arXiv:1911.01971, Nov. 5, 2019, 8 pages.
Pratikakis et al., “ICDAR 2019 Competition on Document Image
Binarization (DIBCO 2019),” 2019 International Conference on
Document Analysis and Recognition (ICDAR), IEEE, 2019, pp.
1547-1556.

Ronneberger et al., “U-Net: Convolutional Networks for Biomedi-
cal Image Segmentation,” arXiv:1505.04597v1 [¢s.CV] May 18,
2015, 8 pages.

Baheti et al., “Eff-unet: A novel architecture for semantic segmen-
tation in unstructured environment,” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Work-
shops, 2020, 9 pages.

US 11,995,152 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Piantadosi et al., “Breast Segmentation in MRI via U-Net Deep
Convolutional Neural Networks,” 2018 24th International Confer-
ence on Pattern Recognition (ICPR) Beijing, China, Aug. 20-24,
2018, pp. 3917-3922.

Ibtehaz et al., “MultiResUNet : Rethinking the U-Net architecture
for multimodal biomedical image segmentation,” Neural Networks
121 (2020), pp. 74-87.

Limonova et al., “ResNet-like Architecture with Low Hardware
Requirements,” arXiv:2009.07190v1 [cs.CV] Sep. 15, 2020, 8
pages.

Bezmaternykh et al., “U-Net-bin: hacking the document image
binarization contest,” Computer Optics 2019, 43(5), pp. 825-832.
Lu et al., “Distance-Reciprocal Distortion Measure for Binary
Document Images,” IEEE Signal Processing Letters, vol. 11, No. 2,
Feb. 2004, pp. 228-231.

Limonova et al., “Bipolar Morphological U-Net for Document
Binarization,” Proc. of SPIE vol. 11605, 116050P, 2021, 10 pages.

* cited by examiner

U.S. Patent

AN

May 28, 2024

100

)

Processor
110

)

P

Sheet 1 of 7

US 11,995,152 B2

~ Secondary N\

Memory 120

)

K=

Main Memory Interna1I2I\£ed|um
115
Removable
Medium
130
I/O Interface \/
135
155
Communication External Medium
Interface 140 ‘\C\’ 145
150
Baseband Radio Antenna
160 165 170

Communication Bus

105

FIG. 1

U.S. Patent May 28, 2024 Sheet 2 of 7 US 11,995,152 B2

FIG. 2

U.S. Patent May 28, 2024 Sheet 3 of 7 US 11,995,152 B2

Train Initial Neural Network

310
A 4
Anot_her No Select Best BM Network
lteration? 370
320
Y
END
Convert Layer to BM Layer FIG. 3

340

Y
Freeze Converted Layer
350

\ 4
Train Remaining Network
360

995,152 B2

Sheet 4 of 7 US 11,

, 2024

May 28

U.S. Patent

supgynt o Gas RO iy e Y

sud g R

14

Old

US 11,995,152 B2

Sheet 5 of 7

May 28, 2024

U.S. Patent

e

to0Ce
I A A B

LI B A

9999498494

FIG. 5

FIG. 6

U.S. Patent May 28, 2024 Sheet 6 of 7 US 11,995,152 B2

1 16 16 32 16 16 1

Input N Output
image Image

128° 128° 1289 K
I !
l 32 32 64 32 '

322 327 32°
——— convolution 3x3, RelL.U
—— e\ mmm b mmm o e > Copy
FIG. 7
~~~~~ -»  max-pool 2x2

— » up-sampling 2x2

...................... » convolution 1x1, sigmoid



995,152 B2

b

US 11

Sheet 7 of 7

May 28, 2024

U.S. Patent

uoleZIRUIg [RapI

¢ mm.wevf. Q,w“.fv. R e

g8 "Old

Sw?&..ﬁom i..;ﬂ.@«&l\m .é.tﬂmm%éx%‘. S g g

. A #

P e

‘ %MW\% mm&»..,v,..’.«,..s“w\&,

3
by

uonezueulq 1IsN-N

[tgd p
T .?Z.w.&:\. g Fal ¢y mrpde »\“.ét
RS ;
SV e g D LAY

sy Focesod ornvs, o ¢

V8 'Old

5 e ot
; ...\3}

e s

i

{ 2
e

D B

-

#
hm.l s
L

B Rt S e

afbewn induy




US 11,995,152 B2

1

BIPOLAR MORPHOLOGICAL NEURAL
NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to Russian Patent App.
No. 2021106621, filed on Mar. 15, 2021, which is hereby
incorporated herein by reference as if set forth in full.

BACKGROUND
Field of the Invention

The embodiments described herein are generally directed
to neural networks, and, more particularly, to bipolar mor-
phological neural networks that minimize, eliminate, or
otherwise reduce multiplication operations.

Description of the Related Art

Neural networks are widely used in computer recognition
and vision, and the scope of neural network usage continues
to grow steadily. Various deep neural network architectures
have been developed to solve problems of interest. Cur-
rently, neural networks are actively used on mobile devices
and embedded systems that have limited resources (e.g.,
processing, memory, and/or electrical power resources) and
a strong need for low power consumption (e.g., because they
depend upon battery power). There are a number of methods
for reducing resource consumption of neural networks on
such devices, but these methods have constraints that limit
their applicability.

SUMMARY

Accordingly, systems, methods, and non-transitory com-
puter-readable media are disclosed for bipolar morphologi-
cal neural networks.

In an embodiment, a method is disclosed that uses at least
one hardware processor to: convert an initial neural network
into a bipolar morphological neural network by, for one or
more convolutional layers in the initial neural network,
converting the convolutional layer into a bipolar morpho-
logical layer by replacing each calculation of

N

S

=1

wherein X is an input in an input vector that has a length N,
and w is a weight, with a calculation of

expmax(y; +v;)
J

wherein exp is an exponential function, max identifies a
maximum, y is a new input derived from x, and v is a new
weight derived from w; and train each bipolar morphologi-
cal layer in the bipolar morphological neural network layer
by layer.

A structure of the bipolar morphological layer may be:

exp max(In ReLU (x;) + v?) —exp max(InReLU(xy) + v}) -
j j

exp max(InReLU(~x;) + v?) + exp max(InReLU(-x;) + v})
j j

20

25

30

35

40

45

50

55

60

65

2

-continued
wherein

y ={1n|wj|, if (-Dfw; >0
7 —oo, otherwise

wherein In is a natural logarithm, and ReL.U is a Rectified
Linear Unit.

Each bipolar morphological layer may process positive
and negative parts of x separately but in a same manner. A
structure of the bipolar morphological layer may be:

o(exp max’L; (Inx} +v}) - exp max’, (Inx} +v;) -

exp max)L; (Inx; +v}) + expmax/_, (Inx; +v;) +v;)

wherein
o _{xj, x5 20
7 0, x;<0
_ _{—xj, X <0
X7 =

0, Xz

y :{lnlel, if (-1*w; >0
7 —oo, otherwise

wherein In is a natural logarithm.

Training the bipolar morphological neural network may
comprise, sequentially from first to last, for each bipolar
morphological layer: training the bipolar morphological
layer; and, after training the bipolar morphological layer and
before any subsequent training, freezing a structure and
weights of the bipolar morphological layer, such that the
structure and weights of the bipolar morphological layer do
not change during the subsequent training.

The initial neural network may have a U-Net architecture.

The method may further comprise using the at least one
hardware processor to execute the trained bipolar morpho-
logical neural network to complete a task that produces an
output from an input. The input image may comprise an
image, wherein the task comprises object recognition within
the image. The input may comprise an image, wherein the
task comprises text recognition within the image. The input
may comprise an image, wherein the task comprises clas-
sifying each pixel in the image into one of two classes, and
wherein the output comprises a binarization of the image.
The initial neural network may have a U-Net architecture.
The two classes may consist of foreground and background.
The method may further comprise using the at least one
hardware processor to generate the input by: converting an
input image to grayscale; and extracting a plurality of
patches from the grayscale input image, wherein each of the
plurality of patches is an input to the trained bipolar mor-
phological neural network.

The method may further comprise using the at least one
hardware processor to, before converting the initial neural
network into the bipolar morphological neural network, train
the initial neural network.

The method may further comprise using the at least one
hardware processor to, after training each bipolar morpho-
logical layer in the bipolar morphological neural network
layer by layer, training a remainder of the bipolar morpho-
logical neural network without changing a structure and



US 11,995,152 B2

3

weights of any bipolar morphological layers in the bipolar
morphological neural network.

Converting an initial neural network into a bipolar mor-
phological neural network may further comprise, for one or
more fully-connected layers in the initial neural network,
converting the fully-connected layer into a bipolar morpho-
logical layer by replacing an operation of

»
J= U[ZI@) w(p, @)+ b(q)]

p=1

wherein g=1,Q, wherein I is an input to the fully-connected
layer, J is an output from the fully-connected layer, G is a
nonlinear activation function, P is a number of inputs [, Q is
a number of neurons in the fully-connected layer, w(p,q) is
a weight for input p and neuron ¢, and b(q) is a bias for
neuron ¢, with an operation of

J = o(expmax?_; Anl/(p)| +v* (p, g)) — exp max]_, (In|-1(p)| + v (p, g)) —

exp max,_; (InlZ(p)| + v (p, @) + exp max,_, (In|-I(p)] + v (p, @) + b(g))

wherein v*(p,q) is a new weight for a positive part of input
p and neuron q, and wherein v (p,q) is a new weight for a
negative part of input p and neuron q.

All convolutional layers in the initial neural network may
be converted into bipolar morphological layers. The convo-
Iutional layers in the initial neural network may be the only
layers in the initial neural network that are converted into
bipolar morphological layers.

Any of the methods may be embodied in executable
software modules of a processor-based system, such as a
server, and/or in executable instructions stored in a non-
transitory computer-readable medium.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present invention, both as to its structure
and operation, may be gleaned in part by study of the
accompanying drawings, in which like reference numerals
refer to like parts, and in which:

FIG. 1 illustrates an example processing system, by which
one or more of the processes described herein, may be
executed, according to an embodiment;

FIG. 2 illustrates a structure of a bipolar morphological
layer, according to an embodiment;

FIG. 3 illustrates a process for generating a trained bipolar
morphological network, according to an embodiment;

FIG. 4 illustrates examples of images and ground truth,
used in a particular test;

FIGS. 5 and 6 illustrate examples of images in respective
training datasets, used in particular tests;

FIG. 7 illustrates the architecture of a U-net, according to
an embodiment; and

FIGS. 8A and 8B illustrate examples of an input and
outputs of document binarization.

DETAILED DESCRIPTION

In an embodiment, systems, methods, and non-transitory
computer-readable media are disclosed for generating and
operating a bipolar morphological neural network. After
reading this description, it will become apparent to one

20

25

30

35

40

45

50

55

60

65

4

skilled in the art how to implement the invention in various
alternative embodiments and for alternative uses. However,
although various embodiments of the present invention will
be described herein, it is understood that these embodiments
are presented by way of example and illustration only, and
not limitation. As such, this detailed description of various
embodiments should not be construed to limit the scope or
breadth of the present invention as set forth in the appended
claims.

1. EXAMPLE PROCESSING DEVICE

FIG. 1 is a block diagram illustrating an example wired or
wireless system 100 that may be used in connection with
various embodiments described herein. For example, system
100 may be used to execute one or more of the functions,
processes, or methods described herein (e.g., one or more
software modules of an application implementing the dis-
closed processes). System 100 can be a server (e.g., which
services requests over one or more networks, including, for
example, the Internet), a personal computer (e.g.. desktop,
laptop, or tablet computer), a mobile device (e.g., smart-
phone), a controller (e.g., in an autonomous vehicle, robot,
etc.), or any other processor-enabled device that is capable
of wired or wireless data communication. Other computer
systems and/or architectures may be also used, as will be
clear to those skilled in the art.

System 100 preferably includes one or more processors,
such as processor 110. Additional processors may be pro-
vided, such as an auxiliary processor to manage input/
output, an auxiliary processor to perform floating-point
mathematical operations, a special-purpose microprocessor
having an architecture suitable for fast execution of signal-
processing algorithms (e.g., digital-signal processor), a slave
processor subordinate to the main processing system (e.g.,
back-end processor), an additional microprocessor or con-
troller for dual or multiple processor systems, and/or a
coprocessor. Such auxiliary processors may be discrete
processors or may be integrated with processor 110.
Examples of processors which may be used with system 100
include, without limitation, the Pentium® processor, Core
i7® processor, and Xeon® processor, all of which are
available from Intel Corporation of Santa Clara, California.

Processor 110 is preferably connected to a communication
bus 105. Communication bus 105 may include a data
channel for facilitating information transfer between storage
and other peripheral components of system 100. Further-
more, communication bus 105 may provide a set of signals
used for communication with processor 110, including a
data bus, address bus, and/or control bus (not shown).
Communication bus 105 may comprise any standard or
non-standard bus architecture such as, for example, bus
architectures compliant with industry standard architecture
(ISA), extended industry standard architecture (EISA),
Micro Channel Architecture (MCA), peripheral component
interconnect (PCI) local bus, standards promulgated by the
Institute of Electrical and Electronics Engineers (IEEE)
including IEEE 488 general-purpose interface bus (GPM),
IEEE 696/S-100, and/or the like.

System 100 preferably includes a main memory 115 and
may also include a secondary memory 120. Main memory
115 provides storage of instructions and data for programs
executing on processor 110, such as one or more of the
functions, processes, and/or modules discussed herein. It
should be understood that programs stored in the memory
and executed by processor 110 may be written and/or
compiled according to any suitable language, including



US 11,995,152 B2

5

without limitation C/C++, Java, JavaScript, Perl, Visual
Basic, .NET, and the like. Main memory 115 is typically
semiconductor-based memory such as dynamic random
access memory (DRAM) and/or static random access
memory (SRAM). Other semiconductor-based memory
types include, for example, synchronous dynamic random
access memory (SDRAM), Rambus dynamic random access
memory (RDRAM), ferroelectric random access memory
(FRAM), and the like, including read only memory (ROM).

Secondary memory 120 may optionally include an inter-
nal medium 125 and/or a removable medium 130. Remov-
able medium 130 is read from and/or written to in any
well-known manner. Removable storage medium 130 may
be, for example, a magnetic tape drive, a compact disc (CD)
drive, a digital versatile disc (DVD) drive, other optical
drive, a flash memory drive, and/or the like.

Secondary memory 120 is a non-transitory computer-
readable medium having computer-executable code (e.g.,
one or more software modules implementing the disclosed
processes) and/or other data stored thereon. The computer
software or data stored on secondary memory 120 is read
into main memory 115 for execution by processor 110.

In alternative embodiments, secondary memory 120 may
include other similar means for allowing computer programs
or other data or instructions to be loaded into system 100.
Such means may include, for example, a communication
interface 140, which allows software and data to be trans-
ferred from external storage medium 145 to system 100.
Examples of external storage medium 145 may include an
external hard disk drive, an external optical drive, an exter-
nal magneto-optical drive, and/or the like. Other examples
of secondary memory 120 may include semiconductor-
based memory, such as programmable read-only memory
(PROM), erasable programmable read-only memory
(EPROM), electrically erasable read-only memory (EE-
PROM), and flash memory (block-oriented memory similar
to EEPROM).

As mentioned above, system 100 may include a commu-
nication interface 140. Communication interface 140 allows
software and data to be transferred between system 100 and
external devices (e.g. printers), networks, or other informa-
tion sources. For example, computer software or executable
code may be transferred to system 100 from a network
server via communication interface 140. Examples of com-
munication interface 140 include a built-in network adapter,
network interface card (NIC), Personal Computer Memory
Card International Association (PCMCIA) network card,
card bus network adapter, wireless network adapter, Uni-
versal Serial Bus (USB) network adapter, modem, a wireless
data card, a communications port, an infrared interface, an
IEEE 1394 fire-wire, and any other device capable of
interfacing system 100 with a network or another computing
device. Communication interface 140 preferably imple-
ments industry-promulgated protocol standards, such as
Ethernet IEEE 802 standards, Fiber Channel, digital sub-
scriber line (DSL), asynchronous digital subscriber line
(ADSL), frame relay, asynchronous transfer mode (ATM),
integrated digital services network (ISDN), personal com-
munications services (PCS), transmission control protocol/
Internet protocol (TCP/IP), serial line Internet protocol/point
to point protocol (SLIP/PPP), and so on, but may also
implement customized or non-standard interface protocols
as well.

Software and data transferred via communication inter-
face 140 are generally in the form of electrical communi-
cation signals 155. These signals 155 may be provided to
communication interface 140 via a communication channel

10

15

20

25

30

35

40

45

50

55

60

65

6

150. In an embodiment, communication channel 150 may be
a wired or wireless network, or any variety of other com-
munication links. Communication channel 150 carries sig-
nals 155 and can be implemented using a variety of wired or
wireless communication means including wire or cable,
fiber optics, conventional phone line, cellular phone link,
wireless data communication link, radio frequency (“RF”)
link, or infrared link, just to name a few.

Computer-executable code (e.g., computer programs,
such as one or more software modules implementing the
disclosed processes) is stored in main memory 115 and/or
secondary memory 120. Computer programs can also be
received via communication interface 140 and stored in
main memory 115 and/or secondary memory 120. Such
computer programs, when executed, enable system 100 to
perform the various functions of the disclosed embodiments
as described elsewhere herein.

In this description, the term “computer-readable medium”
is used to refer to any non-transitory computer-readable
storage media used to provide computer-executable code
and/or other data to or within system 100. Examples of such
media include main memory 115, secondary memory 120
(including internal memory 125, removable medium 130,
and/or external storage medium 145), and any peripheral
device communicatively coupled with communication inter-
face 140 (including a network information server or other
network device). These non-transitory computer-readable
media are means for providing executable code, program-
ming instructions, software, and/or other data to system 100.

In an embodiment that is implemented using software, the
software may be stored on a computer-readable medium and
loaded into system 100 by way of removable medium 130,
I/O interface 135, or communication interface 140. In such
an embodiment, the software is loaded into system 100 in
the form of electrical communication signals 155. The
software, when executed by processor 110, preferably
causes processor 110 to perform one or more of the pro-
cesses and functions described elsewhere herein.

In an embodiment, I/O interface 135 provides an interface
between one or more components of system 100 and one or
more input and/or output devices. Example input devices
include, without limitation, sensors, keyboards, touch
screens or other touch-sensitive devices, biometric sensing
devices, computer mice, trackballs, pen-based pointing
devices, and/or the like. Examples of output devices include,
without limitation, other processing devices, cathode ray
tubes (CRTs), plasma displays, light-emitting diode (LED)
displays, liquid crystal displays (LCDs), printers, vacuum
fluorescent displays (VFDs), surface-conduction electron-
emitter displays (SEDs), field emission displays (FEDs),
and/or the like. In some cases, an input and output device
may be combined, such as in the case of a touch panel
display (e.g., in a smartphone, tablet, or other mobile device,
in the console of a vehicle, etc.).

In an embodiment, I/O interface 135 provides an interface
to a camera (not shown). for example, system 100 may be a
mobile device, such as a smartphone, tablet computer, or
laptop computer, with one or more integrated cameras (e.g.,
rear and front facing cameras). Alternatively, system 100
may be a desktop or other computing device that is con-
nected via /O interface 135 to an external camera. In either
case, the camera captures images (e.g., photographs, video,
etc.) for processing by processor(s) 110 (e.g., executing the
disclosed software) and/or storage in main memory 115
and/or secondary memory 120.

System 100 may also include optional wireless commu-
nication components that facilitate wireless communication



US 11,995,152 B2

7

over a voice network and/or a data network. The wireless
communication components comprise an antenna system
170, a radio system 165, and a baseband system 160. In such
an embodiment, radio frequency (RF) signals are transmit-
ted and received over the air by antenna system 170 under
the management of radio system 165.

In an embodiment, antenna system 170 may comprise one
or more antennae and one or more multiplexors (not shown)
that perform a switching function to provide antenna system
170 with transmit and receive signal paths. In the receive
path, received RF signals can be coupled from a multiplexor
to a low noise amplifier (not shown) that amplifies the
received RF signal and sends the amplified signal to radio
system 165.

In an alternative embodiment, radio system 165 may
comprise one or more radios that are configured to commu-
nicate over various frequencies. In an embodiment, radio
system 165 may combine a demodulator (not shown) and
modulator (not shown) in one integrated circuit (IC). The
demodulator and modulator can also be separate compo-
nents. In the incoming path, the demodulator strips away the
RF carrier signal leaving a baseband receive audio signal,
which is sent from radio system 165 to baseband system
160.

If the received signal contains audio information, then
baseband system 160 may decode the signal and convert it
to an analog signal. Then, the signal is amplified and sent to
a speaker. Baseband system 160 may also receive analog
audio signals from a microphone. These analog audio sig-
nals may be converted to digital signals and encoded by
baseband system 160. Baseband system 160 can also encode
the digital signals for transmission and generate a baseband
transmit audio signal that is routed to the modulator portion
of radio system 165. The modulator mixes the baseband
transmit audio signal with an RF carrier signal, generating
an RF transmit signal that is routed to antenna system 170
and may pass through a power amplifier (not shown). The
power amplifier amplifies the RF transmit signal and routes
it to antenna system 170, where the signal is switched to the
antenna port for transmission.

Baseband system 160 may also be communicatively
coupled with processor 110, which may be a central pro-
cessing unit (CPU). Processor 110 has access to data storage
areas 115 and 120. Processor 110 is preferably configured to
execute instructions (i.e., computer programs, such one or
more software modules implementing the disclosed pro-
cesses) that can be stored in main memory 115 or secondary
memory 120. Computer programs can also be received from
baseband processor 160 and stored in main memory 110 or
in secondary memory 120, or executed upon receipt. Such
computer programs, when executed, enable system 100 to
perform the various functions of the disclosed embodiments.

2. PROCESS OVERVIEW

Embodiments of processes for generating and operating a
bipolar morphological neural network will now be
described. It should be understood that the described pro-
cesses may be embodied as an algorithm in one or more
software modules, forming an application that is executed
by one or more hardware processors processor 110, for
example, as a software application or library. The described
processes may be implemented as instructions represented in
source code, object code, and/or machine code. These
instructions may be executed directly by the hardware
processor(s) 110, or alternatively, may be executed by a
virtual machine operating between the object code and the

10

15

20

25

30

35

40

45

50

55

60

65

8

hardware processor(s) 110. In addition, the disclosed appli-
cation may be built upon or interfaced with one or more
existing systems.

Alternatively, the described processes may be imple-
mented as a hardware component (e.g., general-purpose
processor, integrated circuit (IC), application-specific inte-
grated circuit (ASIC), digital signal processor (DSP), field-
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, etc.), combi-
nation of hardware components, or combination of hardware
and software components. To clearly illustrate the inter-
changeability of hardware and software, various illustrative
components, blocks, modules, circuits, and steps are
described herein generally in terms of their functionality.
Whether such functionality is implemented as hardware or
software depends upon the particular application and design
constraints imposed on the overall system. Skilled persons
can implement the described functionality in varying ways
for each particular application, but such implementation
decisions should not be interpreted as causing a departure
from the scope of the invention. In addition, the grouping of
functions within a component, block, module, circuit, or step
is for ease of description. Specific functions or steps can be
moved from one component, block, module, circuit, or step
to another without departing from the invention.

Furthermore, while the processes, described herein, are
illustrated with a certain arrangement and ordering of steps,
each process may be implemented with fewer, more, or
different steps and a different arrangement and/or ordering
of steps. In addition, it should be understood that any step,
which does not depend on the completion of another step,
may be executed before, after, or in parallel with that other
independent step, even if the steps are described or illus-
trated in a particular order.

2.1. Introduction

Image processing and recognition have become an inte-
gral part of modern life. Recognition applications are used
to address a wide range of practical problems that require
accurate and fast operation. Such systems should satisfy the
applicable Quality of Service (QoS) conditions (e.g., maxi-
mum decision delay), be scalable, and be energy-efficient.
One key concept in such systems is edge computing, which
refers to a paradigm in which all computations are per-
formed on the device or on the nearest computing system.
The most striking example of this is autonomous vehicles,
which must analyze traffic conditions and make decisions in
real time without any delays. Another example is computer
vision, such as document detection and recognition, on
smartphones. The problem of designing such systems is not
trivial, since the system must be capable of performing a
vast amount of operations on the device, while remaining
resource-efficient. An additional field in which edge com-
puting has a significant advantage is the Internet of Things
(IoT). IoT devices are interconnected in one network (e.g.,
often a wireless network), and must use network bandwidth
and energy extremely efficiently. This means that image
processing devices should have very specialized and simple
architectures, and be able to perform basic operations with-
out requiring data to be transferred to and from a remote
server.

Another reason to be aware of the energy and computa-
tional efficiency of recognition systems is the environmental
impact of such systems. Training processes and neural
architecture searches for complex networks lead to signifi-
cant carbon dioxide emissions. The main idea of “green AI”
is to reduce the environmental impact of the training,
deployment, and infrastructure of new artificial intelligence



US 11,995,152 B2

9

methods. Thus, compact models for efficient on-device
recognition are of vital interest.

One way to improve the efficiency of neural networks is
to reduce their inference time, and one way to improve the
inference time of neural networks is to use a computation-
ally simplified neuron model. The calculations in such a
neuron model can be implemented using fewer logic gates
than the sequences of multiplications and additions used in
classical neuron models. This means that calculations in a
simplified neuron model can be performed in less time and
are more energy efficient. The latter circumstance is espe-
cially important for mobile recognition systems, which may
rely on batteries as their electrical power sources.

In image recognition, one method for creating small and
fast models is to use quantization to low-precision integer
weights and activations. For example, Yao et al., “Efficient
implementation of convolutional neural networks with end
to end integer-only dataflow,” in 2019 IEEE Int’l Confer-
ence on Multimedia and Expo (ICME), 1780-1785 (July
2019), which is hereby incorporated herein by reference as
if set forth in full, proposed an end-to-end 8-bit integer
model without internal conversions to floating-point data
types. Such models can provide fast inference on mobile and
embedded devices with relatively small losses in accuracy.
Various methods have been proposed for increasing the
accuracy of quantized networks. See, e.g., Choukroun et al.,
“Low-bit quantization of neural networks for efficient infer-
ence,” arXiv:1902.06822 (2019); Pietron et al., “Method-
ologies of compressing a stable performance convolutional
neural networks in image classification,” Neural Processing
Letters, 1-23 (2019); Sun et al., “Multi-precision quantized
neural networks via encoding decomposition of {-1,+1},” in
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33, 5024-5032 (2019); and Ilin et al., “Fast integer
approximations in convolutional neural networks using
layer-by-layer training,” in 9th Int’1 Conference on Machine
Vision, 103410Q-103410Q, Int’l Society for Optics and
Photonics (2017), DOI: 10.1117/12.2268722; which are all
hereby incorporated herein by reference as if set forth in full.
Fast implementations are also of interest. See, e.g., Limo-
nova et al., “Special aspects of matrix operation implemen-
tations for low-precision neural network model on the
Elbrus platform,” Vestnik YuUrGU MMP 13(1), 118-128
(2020), doi:10.14529/mmp200109; Morcel et al., “Feather-
Net: An accelerated convolutional neural network design for
resource-constrained FPGAs,” ACM Trans. Reconfigurable
Technol. Syst. 12(2) (2019); and Li et al., “Simulate-the-
hardware: Training accurate binarized neural networks for
low-precision neural accelerators,” in Proceedings of the
24th Asia and South Pacific Design Automation Conference,
ASPDAC 19, 323-328 (2019); which are all hereby incor-
porated herein by reference as if set forth in full.

Examples of neural networks with simplified neuron
models are those with integer calculations and morphologi-
cal neural networks. See, e.g., Vanhoucke et al., “Improving
the speed of neural networks on CPUs,” in Deep Learning
Unsupervised Feature Learning Workshop, NIPS 2011
(2011); Ritter et al., “An introduction to morphological
neural networks,” Proceedings of 13th Int’l Conference on
Pattern Recognition 4, 709-717, vol. 4 (1996); which are
both hereby incorporated herein by reference as if set forth
in full. The usage of integer data types can speed up
inference, because calculation of an integer sum and integer
product on modern mobile central processors is faster than
the calculation of a real sum and real product. This is due to
architectural issues of the Advanced Reduced Instruction Set
Computer (RISC) Machines (ARM) processor, which is a

10

20

25

30

35

40

45

50

55

60

65

10

common processor used in mobile devices and embedded
systems, as well as the presence of Single Instruction
Multiple Data (SIMD) extensions. Such extensions can
simultaneously perform the same operation on multiple
elements of a data register. In the case of integer calcula-
tions, SIMD is very useful, since the register has a fixed size
of, for example, 128 bits (for ARM NEON™ and Intel
SSE™)_ which allows processing of four float32 values and
sixteen 8-bit values. However, replacing the classical neuron
model with an integer model implies a change in the
calculation results, due to the accuracy loss of the weights
and possible overflows. Recent research introduces different
methods to preserve recognition quality, even with low-bit
quantization of a network. See, e.g., Gupta et al., “Deep
learning with limited numerical precision,” in Proceedings
of the 32nd Int’1 Conference on Machine Learning (ICML-
15), D. Blei and F. Bach, eds., 1737-1746, JMLR Workshop
and Conference Proceedings (2015); Ilin et al.; Zhou et al.,
“Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients,” arXiv preprint
arXiv: =1606.06160 (2016); Courbariaux et al., “Binarized
neural networks: Training deep neural networks with
weights and activations constrained to +1 or -1,” arXiv
preprint arXiv:1602.02830 (2016); Rastegari et al., “Xnor-
net: ImageNet classification using binary convolutional neu-
ral networks,” in European Conference on Computer Vision,
525-542, Springer (2016); Zhou et al., “Incremental network
quantization: Towards lossless CNNs with low-precision
weights,” (2017), arXiv:1702.03044; and Choukroun et al.;
which are all hereby incorporated herein by reference as if
set forth in full.

In an embodiment, a morphological neuron model uses
addition and maximum/minimum operations, instead of
addition and multiplication operations, as well as threshold
nonlinear activation functions. See, e.g., Ritter et al.; and
Sussner et al., “Constructive Morphological Neural Net-
works: Some Theoretical Aspects and Experimental Results
in Classification,” 123-144, Springer Berlin Heidelberg
(2009); which are both hereby incorporated herein by ref-
erence as if set forth in full. This model largely appeals to the
biological properties of neurons. Further development of
this idea is a dendrite morphological neuron, which enables
simulation of the excitation and inhibition processes and a
generalization of the model in terms of lattice algebra. See,
e.g., Ritter et al.,“Morphological perceptrons with dendritic
structure,” in the 12th IEEE Int’l Conference on Fuzzy
Systems, 2003, 2, 1296-1301, vol. 2 (2003); and Ritter et al.,
“Lattice algebra approach to single-neuron computation,”
IEEE Transactions on Neural Networks 14, 282-295 (2003);
which are both hereby incorporated herein by reference as if
set forth in full.

Notably, a morphological neural network is usually a
single-layer perceptron. To train such a neural network,
heuristic algorithms are used, which can be supplemented by
stochastic gradient descent. See, e.g., Sossa et al., “Efficient
training for dendrite morphological neural networks,” Neu-
rocomputing 131, 132-142 (2014); and Zamora et al., “Den-
drite morphological neurons trained by stochastic gradient
descent,” in 2016 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), 1-8 (2016); which are both
hereby incorporated herein by reference as if set forth in full.
However, when used in deep models and trained with
gradient descent methods, the neuron is inferior to the
McCulloch-Pitts neuron for a number of problems. At the
same time, this neuron shows promising results in hybrid
models, in which morphological neurons are used to extract
features. See, e.g., Hernandez et al., “Hybrid neural net-



US 11,995,152 B2

11

works for big data classification,” Neurocomputing 390,
327-340 (2020) which is hereby incorporated herein by
reference as if set forth in full.

Another morphological neural network model, called
DenMo-Net, with dilation and erosion neurons was pre-
sented in Mondal et al., “Dense morphological network: an
universal function approximator,” arXiv preprint arXiv:
1901.00109 (2019), which is hereby incorporated herein by
reference as if set forth in full. Networks with the three-layer
DenMo-Net architecture demonstrated good results, relative
to a classical three-layer architecture. However, this model
does not seem to be scalable, and does not show state-of-the
art quality in image recognition problems with its simple
structure.

There are also methods to modify layers to exclude
multiplication operations. For example, Mellouli et al.,
“Morphological convolutional neural network architecture
for digit recognition,” [EEE Transactions on Neural Net-
works and Learning Systems 30(9), 2876-2885 (2019),
which is hereby incorporated herein by reference as if set
forth in full, introduced MConv layers that calculate erosion
or dilation in a sliding window, similar to standard convo-
Iutional layers, and achieve state-of-the-art classification
accuracy for Modified National Institute of Standards and
Technology (MNIST) and Street View House Numbers
(SVNH) datasets. In a DeepShift model, Elhoushi et al.,
“DeepShift: Towards multiplication-less neural networks,”
arXiv preprint arXiv:1905.13298 (2019), which is hereby
incorporated herein by reference as if set forth in full, trained
networks to have a bit shift, instead of multiplication. Chen
et al., “AdderNet: Do we really need multiplications in deep
learning?,” in 12th Int’l Conference on Machine Vision
(ICMV 2019), 11433, 962-969, Int’1 Society for Optics and
Photonics, SPIE (2020), doi:10.1117/12.2559299, which is
hereby incorporated herein by reference as if set forth in full,
modified convolutional layers to use the Li-norm. This
enables the simplification of feature extraction in the net-
work, while preserving multiplication operations in other
layers. Such a network is trained using sign gradient in
backpropagation.

2.2. BM Layer

In an embodiment, a new model of a neuron is utilized,
based on the idea of a morphological neuron. The model
may be considered an approximation of a classical neuron,
which enables the adaptation of modern neural network
architectures to this new neuron model. In addition, a new
approach to training and fine-tuning such neural networks is
disclosed. The new trained model was tested for MNIST
number recognition, Machine-Readable Zone (MRZ) sym-
bol recognition, and document binarization, as discussed
elsewhere herein.

In an embodiment, neural network layers with neurons
that calculate linear combinations of inputs are approxi-
mated by a morphological structure. These layers can be
fully connected or convolutional, which is normally the
most computationally complex part of a neural network. In
an embodiment, the majority of computations utilize maxi-
mum/minimum and addition operations.

The morphological structure of each layer may be referred
to herein as a “bipolar morphological layer” or “BM layer,”
and one neuron may be referred to herein as a “bipolar
morphological neuron,” “BM neuwron,” or “BMN.” The
word “bipolar” refers to the two computational paths that
consider excitation and inhibition processes in a neuron. In
biology, bipolar neurons are mostly responsible for percep-
tion, and can be found, for example, in the retina.

20

25

30

35

40

45

50

55

60

65

12

The structure of the BM layer is inspired by approxima-
tion of the classical layer. The calculations of one neuron can
be expressed as four neurons placed in parallel with the
following addition and subtraction:

M=

Xiw; =

M=

N N N
00 01 10 11
P xfwf—Zp,v xilwfI—Zpi Ixflwf+2pi eIl
i=1 i=1 i=1

&

wherein

i _{1, if (=1x; >0 and (=1)w; >0
! 0, otherwise

Values of p,¥ define the connections of new neurons. For
each value, the inputs x and weights w are considered as
positive values, and approximation is performed. Denote:

M = max(x;w;)
j

N

S

k= =1

-1

The approximation is:

N N
Zx,vw,v = exp{anx,vw,} =expilnM (1 + &)} =

=1 =1
(1 + kexplnM = (1 + k)exp{ln(max(xjwj))} = (1 + k)exp maxIn(x,w;) =
7 7

(1 +kexp m]ax(lnxj +Inw;) = (1 +k)exp m]z}x(yj +v;) = exp m]ax(yj +v;)

wherein y; are new inputs, and v=In w; are new weights.
This approximation is correct when k<<1. Since 0<k<N-1,
the best case is that the sum contains only one non-zero term
(k=0), and the worst case is that the sum contains all equal
terms (k=N—1). In the worst case, the real value for the sum
will be N times more than the approximated value. Such
behavior cannot be called a good approximation. However,
even an approximation with an absolute error that is well-
limited can lead to an unpredictable decrease in the accuracy
of a neural network, due to a strong non-linearity between
layers. For example, low-precision neural networks do not
show high accuracy after direct conversion, but give perfect
results with the help of special training approaches, such as
those described in Zhou et al. (2017). Thus, the accuracy of
one neuron approximation should not be a decisive criterion
in the case of neural networks. It is more important whether
or not the approximation results in a high quality network.
Thus, the accuracy of the approximation was investigated
after conversion and training of the network.

FIG. 2 illustrates the structure of a BM layer, resulting
from the approximation, according to an embodiment. In the
illustrated embodiment, the BM layer has an input vector X
and a weight matrix V. The symbol “o” designates function
composition. The Rectified Linear Unit (ReLU) enables the
BM layer to take values above zero and create four com-
putational paths for positive and negative inputs or coeffi-
cients. The essential morphological operation of the BM
layer is then performed on the logarithm of the rectified
input vector X. The results are passed to the exponential unit
and subtracted to produce an output Y.

The BM layer will obtain results similar to the original or
classical layer in the case of a good logarithm approxima-



US 11,995,152 B2

13

tion. This occurs when the sum has one major term. If there
are several dominant terms, the approximation can take this
into account.

The operations of the natural logarithm (In) and exponen-
tial unit (exp) are performed on the activation (i.e., the signal
transmitted between network layers) and can be considered
part of an activation function. Normally, activation functions
do not make significant contributions to the computational
complexity of a neural network. Thus, the increase in
computational complexity should be of little consequence. If
the activation function does take noticeable time, it can be
approximated by a simpler function. An example of a
simpler function that may be used is a piece-wise linear
approximation. Another option is to perform input quanti-
zation and use look-up tables, which is also fast.

The structure of the BM layer can be expressed as
follows:

BMN(x, w) = exp max(InReLU (x;) + v}) — exp max(InReLU (x;) + v}) -
J J
exp max(InReLU(~x;) + v?) + exp max(InReLU(—x;) + v})
J J

wherein

- {lnlel, if (~1)"w;>0
Vi T —o0, otherwise

If a layer of the neural network includes bias, which is
added to the linear combination, the bias can be added after
the BM layer approximation.

2.3. Training

A method for training a neural network with BM layers
will now be described. Training BM layers using standard
algorithms can be challenging, since there is only one
non-zero gradient element, due to the maximum operation,
and only one weight is updated at each iteration. Some
weights can never be updated and never fire after training,
thereby giving redundancy to the network.

In an embodiment, the BM layers are trained layer by
layer. In particular, convolutional and fully-connected layers
are modified sequentially from the first to the last, the
modified structure and weights are frozen, and then the other
layers are trained. This approach enables the network to be
fine-tuned and adapt to changes, while ignoring possible
issues with training BMNs directly and preserving calcula-
tion accuracy. Good results have been obtained by this
layer-by-layer approach during training of 8-bit integer
neural networks. See, e.g., [lin et al. The idea is to divide
weights into groups, and perform approximation and fine-
tuning until the approximation of the full network is intro-
duced, as described in Zhou et al. (2017) for lossless low-bit
quantization.

An embodiment of the method (Method 1) for training a
neural network with BM layers may be summarized by the
following algorithm:

Algorithm for Training a BM Network

10

20

25

30

35

40

45

50

55

14

FIG. 3 illustrates a process for generating a trained BM
network, according to an embodiment of Method 1. In
subprocess 310, the initial neural network is trained. Then,
the process loops through one or more iterations of gener-
ating the BM network to identify a best BM network (e.g.,
the BM network having the highest accuracy) to be used.
Specifically, in subprocess 320, the process determines
whether or not another iteration is to be performed. This
determination may be based on a user setting (e.g., speci-
fying the number of iterations to be performed), a system
setting (e.g., specifying a threshold accuracy that must be
achieved), a combination of user and system settings (e.g.,
specifying the number of BM networks that must be pro-
duced with a threshold accuracy), and/or any other criteria.
When determining that another iteration is to be performed
(i.e., “Yes” in subprocess 320), the process loops through
subprocesses 330-360. Otherwise, when determining that no
more iterations are to be performed (i.e., “No” in subprocess
320), the process proceeds to step 370.

In each iteration of the loop formed by subprocesses
330-360, the initial neural network is converted into a BM
network and trained. Specifically, in subprocess 330, the
process determines whether or not another layer needs to be
converted. All or only a subset of layers of the initial neural
network may be converted to BM layers, depending on the
implementation. For example, in one embodiment, only a
subset of convolutional layers are converted to BM layers.
In an alternative embodiment, all convolutional layers, but
no other layers, are converted to BM layers. In yet another
embodiment, all convolutional and fully-connected layers
are converted to BM layers. When determining that another
layer is to be converted (i.e., “Yes” in subprocess 330), the
process proceeds to subprocess 340. Otherwise, when deter-
mining that no more layers are to be converted (i.e., “No” in
subprocess 330), the process returns to subprocess 320 to
determine whether or not another iteration should be per-
formed.

In subprocess 340, the current layer is converted to a BM
layer, as described elsewhere herein. For example, multipli-
cation operations may be approximated using maximum
and/or addition/subtraction operations that do not utilize
multiplication. Then, in subprocess 350, the structure and
weights of the converted BM layer are frozen, such that they
do not change in further subprocesses within the loop
performed underneath subprocess 320. In other words, as
additional layers are converted and the remainder of the
network is trained, the structure and weights of the con-
verted BM layers remain fixed and do not change. Next, in
subprocess 360, the remainder of the BM network is trained,
for example, according to any standard training method.

In subprocess 370, once all iterations of creating a BM
network have been completed, the best BM network is
selected from among the BM networks that were created.
The BM network may be selected based on any one or more
criteria. For example, each BM network may be tested using
a testing dataset, and the BM network with the highest

Input: Training data
Output: Neural network with BM layers
1 train classical neural network by standard methods;
2 for each convolutional and fully-connected layer do
3 approximate current layer and freeze the current layer’s weights;
4 train the remaining part of the network by standard methods;

5 perform steps 1-4 several times with different initial conditions and choose the best result;




US 11,995,152 B2

15

accuracy may be selected. The selected BM network may
then be moved into production and executed or operated to
perform one or more iterations of its task on one or a
plurality of devices. For example, the BM network may be
installed on an edge computing device (e.g., mobile device,
such as a smartphone) to perform its task (e.g., object
recognition, text recognition, binarization, etc.) in a more
efficient manner than a classical neural network.

An alternative method (Method 2) for training a neural

5

network with BM layers differs in steps 3 and 4. In particu- 10

lar, the weights are not frozen in step 3 (e.g., subprocess
350), and the BM layers are trained with the whole network.
This method may face convergence issues and a slower
training process. However, to avoid these issues, the layers
may be initialized with converted weight values that are
supposed to be close to the desired values.

In an embodiment, the training may comprise neuron-by-
neuron fine-tuning. In addition, the approximation and freez-
ing of weights can be performed one neuron at a time in each
layer.

3. EXAMPLE EMBODIMENT

One particular embodiment of a bipolar morphological
network will now be described. In this embodiment, a U-Net
architecture is used, and the bipolar morphological U-Net
was trained for document binarization. However, it should
be understood that the techniques described with respect to
this embodiment may be applied to network architectures
other than a U-Net, and for tasks other than document
binarization.

This embodiment addresses the semantic segmentation
problem, and demonstrates that BM networks are able to
handle this problem in the context of binarization. Binariza-
tion is a common procedure in image processing and com-
puter vision. The task is to classify image pixels into two
classes (e.g., foreground and background).

A document binarization problem is described in the
Document Image Binarization Competition (DIBCO), as
described in Pratikakis et al., “ICDAR2017 competition on
document image binarization (DIBCO 2017),” in 2017 14th
IAPR Int’l Conference on Document Analysis and Recog-
nition (ICDAR), 01, 1395-1403 (2017), which is hereby
incorporated herein by reference as if set forth in full.
DIBCO is a public challenge on the binarization of historical
documents. In 2017, the DIBCO challenge consisted of
eighty-six training and twenty testing images, with ideal
binary markup, and evaluation tools. Some samples of the
input images and ground truth are illustrated in FIG. 4, in
which images a) and b) represent the document image and
binarized ground truth for a handwritten document, respec-
tively, and c) and d) represent the document image and
binarized ground truth for a printed document, respectively.
A disclosed embodiment solves the document binarization
problem based on a convolutional neural network with a
U-Net architecture, which has demonstrated efficiency in
various segmentation problems. See, e.g., Ronneberger et
al., “U-net: Convolutional networks for biomedical image
segmentation,” in Int’] Conference on Medical Image Com-
puting and Computer-Assisted Intervention, 234-241,
Springer (2015); Baheti et al., “Eff-Unet: A novel architec-
ture for semantic segmentation in unstructured environ-
ment,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Work-
shops (June 2020); Piantadosi et al., “Breast Segmentation
in Mill via U-Net Deep Convolutional Neural Networks,” in
2018 24th Int’] Conference on Pattern Recognition (ICPR),

h

20

30

35

45

50

55

60

65

16
3917-3922 (2018); and Ibtehaz et al., “Multiresunet:
Rethinking the U-Net architecture for multimodal biomedi-
cal image segmentation,” Neural Networks 121, 74-87
(2020); which are all hereby incorporated herein by refer-
ence as if set forth in full.

The winners of the 2017 DIBCO challenge presented a
solution based on a deep convolutional neural network with
a U-Net architecture. See Bezmaternykh et al., “U-net-bin:
hacking the document image binarization contest,” Com-
puter optics 43(5), 825-832 (2019), doi:10.18287/2412-
6179-2019-43-5-825-832, which is hereby incorporated
herein by reference as if set forth in full. That solution
converted the images to grayscale and extracted patches that
were 128x128 pixels in size. The data was then divided, with
80% in the training dataset and 20% in the validation
dataset, so that all patches from one image were in the same
dataset. In addition, data augmentation was performed,
including adding shifts, reducing noise, improving contrast,
performing scaling, and augmenting lines. The network was
trained with an Adaptive Moment Estimation (ADAM)
optimizer, using binary cross-entropy as a loss function and
mean Intersection over Union (mloU) to estimate binariza-
tion accuracy. The same U-Net architecture, training data,
and data augmentation may be used for the disclosed
embodiment.

3.1. Overview

In an embodiment, a BM neuron is an approximation of
a classical or standard neuron that does not utilize multipli-
cation, in order to enhance inference efficiency. A BM
neuron is created by considering the logarithms of the input
and weights, and approximating the resulting sum by its
maximum term. In this case, all complex computations are
performed on the activation vector for a linear number of
operations, and there are no multiplication operations inside
the layer. The gate complexity and latency of such a neuron
are superior for sufficiently large convolutional layers.

3.2. BM Neuron Model

A classical neuron y takes a scalar product of its inputs x
and weights w, adds bias w,, and applies a nonlinear
activation function 6(-) to the result:

N
=1

wherein N is the length of input x.

BM neuron y ,,, with inputs x, weights v* and v, bias v,,,
and non-linear activation function 6(-), performs the follow-
ing operation:

+ o o o
Vaarle, v, v, vp) = ofexp maszl(lnxj +v) —expmaszl(lnxj +v) -
. N o
exp maszl(lnxj + vj) + expmaszl(lnxj + vj) +v3)
wherein
o {xj, x;20
7700, x,<0

[T x;<0
""{0,

J .
Xjz

wherein N is the length of input x, and In 0=—c and is
represented by a big enough negative value for real com-
putations.



US 11,995,152 B2

17

Notably, the BM neuron processes positive and negative
parts of input x separately, but in the same manner. This can
be interpreted as two identical computational paths, which
simulate excitation and inhibition of the BM neuron, respec-
tively.

3.3. BM Layer

BM neurons can be used to form layers in the neural
network just like classical layers. In other words, for each
layer with weights, a morphological analogue can be con-
structed. For example, the classical convolutional layer with
input I, ., and output J, ., performs the following
operation:

K-1 K-1

Z Z I(1+ Al m + Am, &) -w(Al, Am, ¢, f) + b(f)

=0 Am=0

J =]

S
i
4

wherein F is the number of filters, C is the number of input
channels, KxK is the spatial dimensions of the filter,
LxMxC is the size of the input image, w is a set of
convolutional filters, and b is the bias. It is assumed that
input [ is adequately padded for the result to be of the same
size.

I*w is denoted as:

I+ AL m+ Am, ¢)-w(Al, Am, ¢, f)

Then, the convolutional layer can be written as:

J=0(I*w+b)

The convolution operation for the BM layer can be
denoted as:

IOw=max__,€ max y,_o*"' max,,_oX  H(+ALm+Am,
cHwW(ALAm, ¢.f)

wherein

£TF

I=1,L

m=1,M
A BM convolutional layer with input I,,,,.~ and output
O performs the following operation:

J=a(exp(Inl/IOvH)—exp(Inl—-11OvH—exp(Inl 1OV )+
exp(Inl—{IOV)+b)

The classical fully-connected layer with input I, and
output J, performs the following operation:

20

25

30

35

45

50

55

60

65

18

»
J= O—[Zm w(p, @)+ b(q)]

p=1

wherein

g=1,0

wherein P is the number of inputs I, Q is the number of
neurons in the layer, w is a set of fully-connected weights,
and b is a set of biases.

A BM fully-connected layer performs the following
operation:

J = o(expmax_; (nl/(p)] + v* (p, ¢)) — exp max?_, (In|-1(p)| + v* (p, g)) —
exp maxt_; (Wl 1(p)| +v™ (p, @) + exp maxh_, (In|—1(p)] +v™ (p, ) +b(q))

wherein

g=1,0

More complex layers in the network, such as locally-
connected layers, may be converted in a similar manner.
Layers without weights, such as pooling layers, merging
layers, activation layers, and the like, may be included in the
BM network without changes.

3.4. Training

In this embodiment, an incremental layer-by-layer train-
ing method is used, as described in Limonova et al., “Con-
volutional neural network structure transformations for
complexity reduction and speed improvement,” Pattern Rec-
ognition and Image Analysis 28(1), 24-33 (2018), doi:
10.1134/S105466181801011X, which is hereby incorpo-
rated herein by reference as if set forth in full. This training
method can be summarized as follows:

(1) Train a classical neural network using a conventional

method based on gradient descent;

(2) For each convolutional layer, replace the convolu-

tional layer, having weights {w, b}, by a BM layer with
weights {v*, v_, b}, wherein:

.
Vi

{ln wy, if w;>0
—oo, otherwise
_ {ln [wyl, if w;>0
v =

/ —c0, otherwise

(3) Perform additional training of the neural network,
after the conversion of each convolutional layer in (2),
using the same method as in (1).

4. EXPERIMENTAL RESULTS

Experimental results of particular implementations of a
BM neural network, according to embodiments, will now be
discussed.

4.1. MNIST

MNIST is a database with images of handwritten digits,
and represents a basic dataset for image classification prob-
lems. The training dataset comprises 60,000 gray images,
each with 28x28 pixels. The testing dataset comprises
another 10,000 images. In a particular experiment, 90% of
the training dataset was used for training, and the remaining



US 11,995,152 B2

19

10% of the training dataset was used for validation. FIG. 5§
illustrates some example images from MNIST.

For the experiment, the convolutional and fully-connected
layers of two simple convolutional neural networks (CNNs)
were replaced with BM layers. The notation used to repre-
sent the architectures is as follows:

conv(n, w,, w,): convolutional layer with n filters of size

W XW
fc(n): fully-connected layer with n neurons.
maxpool(w,,w,): max-pooling layer with window size
W XW

dropout(p): drop out the input signals with the probability

relu: rectifier activation function ReL.U(x)=max(x, 0).
softmax: standard softmax activation function.
The CNN, architecture was:

conv(30,5,5)-relu;—dropout,(0,2)—fc,(10)-softmax,
The CNN, architecture was:
conv,(40,5,5)-relu;—maxpool(2,2)-conv,(40,5,5)-
relu,—f,(200)-reluz—dropout, (0,3)—fc,(10)—
softmax,

Layer-by-layer conversion to the BM network was per-
formed on CNN, and CNN,. The table below depicts the
resulting accuracy for each converted part:

Accuracy (%)

Method 1 Method 2

before after before after

CNN  Converted Part fine-tuning fine-tuning fine-tuning fine-tuning

w

10

15

20

25

30

20

accuracies for Methods 1 and 2 both before fine-tuning (i.e.,
when the BM layer’s weights are not trained) and after
fine-tuning (i.e., the whole network is trained). All values
were averaged over ten measurements with random initial-
ization.

The results of the training without BM layers showed a
moderate decrease in accuracy for convolutional layers and
a dramatic decrease in accuracy for fully-connected layers.
This can happen due to the drop in approximation quality for
these layers. Furthermore, the accuracy with two converted
convolutional layers is not much better than the accuracy of
the fully-connected layers only. This means that BM con-
volutions without training perform only slightly better than
random. However, results with training of converted layers
show almost no accuracy decrease after the conversion of
the convolutional layers and better results for fully-con-
nected layers.

The experimental results do not necessarily mean that BM
neural networks with fully-connected layers cannot reach
the accuracy of classical networks. Training methods for
BM neurons are still being investigated. In the experiment,
conversion works excellently for convolutional layers, but
gives poor results for fully-connected layers. At the same
time, neural network inference consumes major time for
convolutional layers. Thus, the disclosed BM network
speeds up neural network inferences. With additional train-
ing techniques, the quality of the multiplication-free BM
network may achieve state-of-the art.

42. MRZ

For MRZ experimentation, a private dataset of about
2.8x10° gray images, each 21x17 pixels in size, was used.
The images contained thirty-seven MRZ symbols, which
were extracted from real documents with machine-readable

CNN none 98.72 — 98.72 — L .

! conv, 42.47 08.51 38.38 9876 zones. 90% of the dataset was used for Fralr.nng, the remaln;
conv,-relu;- 26.89 — 19.86 94.00 ing 10% of the dataset was used for validation, and 9.4x10
dropout;-fc, additional images were used for testing. Again, two CNNs

CNN, none 99.45 — 99.45 — were used
conv, 94.90 99.41 94.57 99.42 . .
conv - relu,- 21.25 98.68 36.23 99.37 The CNNj architecture was:
maxpool;-conv,
conv,-relu,- 10.01 74.95 17.25 99.04 40 conv(8,3,3)-relu,—conv,(30,5,5)-relu,—conv;(30,5,
maxpool;- 5)-reluz—dropout,(0,25)-f¢,(37)-softmax,
conv,-relu,-fo, .
conv,-relu,- 12.91 — 48.73 97.86 The CNN, architecture was:
maxpool,-
conv,-relu,-fe - _ _ _ _ _
dropout, -reluy-fe, 45 conv,(8,3,3)-relu;—conv,(8,5,5)-relu,—conv,(8,3,3)

The converted part of “none” corresponds to the original
classical network, which may be referred to herein as an
“initial” neural network. The table above demonstrates the

reluz—dropout;(0,25)-conv,(12,5,5)-reluy—convs
(12,3,3)-relus—convg(12,1,1)-relug—fc,(37)-
softmax,
The table below depicts the resulting accuracy for each
converted part:

Accuracy (%)

Method 1 Method 2
before after before after
CNN Converted Part fine-tuning fine-tuning fine-tuning fine-tuning
CNN; none 99.63 — 99.63 —
conv, 97.76 99.64 83.07 99.62
conv,-relu;-conv, 8.59 99.47 21.12 99.58
conv,-relu;-conv,- 3.67 98.79 36.89 99.57
relu,-convs
conv,-relu; -conv,-relu,- 12.58 — 27.84 93.38
convs-reluz-dropout;-
fe,

CNN, none 99.67 — 99.67 —
conv, 91.20 99.66 93.71 99.67
conv -relu;-conv, 6.14 99.52 73.79 99.66



US 11,995,152 B2

21 22
-continued
Accuracy (%)
Method 1 Method 2
before after before after
CNN Converted Part fine-tuning fine-tuning fine-tuning fine-tuning
conv -relu;-conv,-relu,- 23.58 99.42 70.25 99.66
convs
conv -relu;-conv,-relu,- 29.56 99.04 77.92 99.63
convs-relus-dropout -
convy,
conv -relu;-conv,-relu,- 34.18 98.45 17.08 99.64
convs-relus-dropout-
conv -relu,-convg
conv -relu;-conv,-relu,- 5.83 98.00 90.46 99.61
convs-relus-dropout-
conv,-relu,-convs-relus-
convg
conv -relu;-conv,-relu,- 4.70 — 27.57 95.46

convs-relus-dropout-
conv,-relu,-convs-relus-
convg-relug-fc,

The converted part of “none” corresponds to the original
classical network. The table above demonstrates the accu-
racies for Methods 1 and 2 both before fine-tuning (i.e.,
when the BM layer’s weights are not trained) and after
fine-tuning (i.e., the whole network is trained). All values

25

In the particular embodiment described herein, the con-
version of convolutional layers and the additional training of
convolutional layers is performed, sequentially, layer by
layer. The results of the training for all conversion steps are
depicted in the table below:

Accuracy of BM U-Net for Each Converted Component

N converted layers 0 1 2

3 4 5 6 7 8 9 10

Validation mIoU (%) 9936 9936 9933

99.23  99.21 99.07  99.11 09.08  99.02 98.85  98.79

were averaged over ten measurements with random initial-
ization.

The recognition accuracy of the neural network, after the
first two convolutional layers and the remaining part of the
network have been trained (with frozen BM layers), is only
slightly different from the original classical network, but
then decreases significantly after that. A possible reason for
this may be the difficulty in adapting to new approximate
features extracted by the BM convolutional layers. How-
ever, training of the full converted network, including BM
layers, shows no significant decrease in accuracy for all
convolutional layers, but does show a visible decrease in
accuracy for fully-connected layers. Thus, in an embodi-
ment, only convolutional layers of the neural network are
converted and trained, in order to keep the original recog-
nition quality.

4.3. Binarization

As described elsewhere herein, for the document bina-
rization task, a convolutional neural network having a U-Net
architecture was used as a baseline. FIG. 7 illustrates the
network architecture, according to an embodiment. As illus-
trated, the architecture comprises ten convolutional layers
with a kernel size of 3x3 and RelLU activation, and a final
convolutional layer with a kernel size of 1x1 and sigmoid
activation. To obtain binary output, output values are
rounded. FIG. 8A illustrates an input image of a handwritten
document, the binarization of the classical U-Net, and an
ideal binarization, respectively. FIG. 8B illustrates the bina-
rization of the same image, as performed by the BM U-Net,
according to an embodiment.

35

40

45

50

55

60

65

These results demonstrate that there were no accuracy
loss in two BM layers, a small decrease in seven BM layers,
and an error increase for the whole converted network of 1.9
times. Overall, this represents high performance for the
network. The table below depicts the full evaluation of the
BM network in terms of the metrics presented in Pratikakis
et al.:

Evaluation Results

Method M Fps PSNR DRD

Otsu (Bezmaternykh et al.) 77.73 77.89 13.85 15.50
Sauvola (Bezmaternykh et al.) 77.11 84.10 14.25 8.85
U-Net (Bezmaternykh et al.)  91.01 92.86 18.28 3.40
U-Net (baseline) 90.89 92.77 18.15 331

BM U-Net (10 layers) 85.82 88.02 17.00 5.13
BM U-Net (9 layers) 87.72 89.50 17.09 4.87
BM U-Net (8 layers) 87.24 89.41 17.25 4.68
BM U-Net (7 layers) 88.97 90.59 17.49 4.19
BM U-Net (6 layers) 88.21 90.21 1741 4.50
BM U-Net (5 layers) 89.29 91.07 17.49 4.38
BM U-Net (4 layers) 90.50  92.07 17.95 3.59
BM U-Net (3 layers) 90.42 9245 18.01 3.52
BM U-Net (2 layers) 90.35 92.56 18.00 3.50
BM U-Net (1 layer) 90.87 9243 18.04 3.39

FM refers to the F-measure, which may be expressed as:

2 x Recall x Precision

FM = wherein

Recall + Precision

Recall = TP+FN

Precision = TP+ FP



US 11,995,152 B2

23

wherein TP is a number of true positives, FP is a number of
false positives, and FN is a number of false negatives.

Fps refers to the pseudo-F-measure. Fps uses pseudo-
Recall (Rps) and pseudo-Precision (Pps), which are calcu-
lated with the same formula as in F-measure. However, Rps
and Pps use distance weights with respect to the ground truth
image.

PSNR refers to the peak signal-to-noise ratio, which may
be expressed as:

2

PSNR =10log WSE wherein
M I ,
Dt Dy Um =1 )
MSE = = —
MN

wherein C is the difference between foreground and back-
ground. PSNR represents the similarity of images I and I'.
The higher the value of PSNR, the more closely the images
[ and I' correspond to each other.

DRD refers to the distance-reciprocal-distortion metric.
DRD is used to measure the visual distortion in binarized
document images. See, e.g., Haiping et al., “Distance-
reciprocal distortion measure for binary document images,”
Signal Processing Letters 11(2), 228-231 (2004), which is
hereby incorporated herein by reference as if set forth in full.
DRD correlates with the human visual perception and is
aimed to measure the distortion for all the flipped pixels (i.e.,
from black to white or from white to black) as follows:

Zi:l DRD;

NUBN

DRD =

wherein S is the number of flipped pixels, NUBN is the
number of non-uniform (i.e., not all black or white pixels)
8x8 blocks in the ground truth image GT, and DRD, is the
distortion of the k-th flipped pixel. DRD is calculated using
a 5x5 normalized weight matrix W,,,,, as defined in Haiping
et al. DRD, is equal to the weighted sum of the pixels in the
5%5 block of the ground truth image that differs from the
centered k-th flipped pixel at (x.y) in the binarized image B:

2 2

DRDy = )" 3 IGTx(, )= Bitx, 9| Win(Gs )
=2 =2

Notably, the disclosed BM network performed worse than
the baseline U-Net, but significantly outperformed the Otsu
and Sauvola baseline methods. Overall, the accuracy was
acceptable, providing the potential for fast, lightweight,
recognition models for end devices. In addition, FPGA
implementations of BM layers with typical parameters
require about two times fewer gates and have 15-30% lower
latency than classical convolutional layers, thereby making
it possible to create high-speed and efficient processing units
for semantic segmentation. Moreover, the binarization qual-
ity of the network decreased relatively smoothly with the
conversion of the convolutional layers to BM layers. This
means that the creator of a BM network can flexibly choose
the desired balance between quality and network complex-

ity.

20

25

30

35

40

45

50

55

60

65

24

5. OVERVIEW OF EXEMPLARY
EMBODIMENTS

In an embodiment, a new bipolar morphological neuron,
which approximates a classical neuron, is used in a neural
network. Inside the neuron, the maximum is taken from the
shifted input signals, and the activation function includes
additional non-linearity.

One or more layers of a classical neural network are
converted to BM layer(s), using this new bipolar morpho-
logical neuron. Within a BM layer, positive and negative
parts of the input signal and filters are separated and pro-
cessed by different pathways. The layer(s) may be converted
into BM layer(s) layer by layer, and the remaining part of the
full neural network may be trained using standard methods.
Advantageously, this approach avoids training issues, such
as updating only one weight at each step due to maximum
operations. Experiments demonstrate that the recognition
accuracy of BM networks, which have only their convolu-
tional layers converted, is close to the accuracy of the
original classical networks for various tasks.

Advantageously, BM neural networks can improve the
speed of neural network inference, because, for most mod-
ern devices, addition/subtraction and maximum/minimum
operations have lower latency than multiplication opera-
tions. Since the BM neuron does not use multiplication, it
can provide an advantage in inference speed for specialized
FPGA and ASIC systems. In other words, these FPGA and
ASIC systems for BM neural networks can be easier and
more energy efficient, because they do not require multipli-
cation units for convolutions. While complex activation
functions may be used, these activation functions take much
less time than convolutional or fully-connected layers,
because they are applied to the activation signal between
layers and have only linear complexity. Furthermore, acti-
vation functions can be approximate and implemented via
look-up tables and be computed even faster. Notably, state-
of-the-art methods for speeding up neural network infer-
ence, such as low-precision computations, pruning, and
structure simplifications, can also be applied to the disclosed
BM model.

Advantageously, the disclosed BM structure enables BM
layers to be included in existing architectures and do not
restrict these architectures in any manner. For example,
morphological neural networks do not allow many layers to
be stacked to increase quality. However, with the disclosed
structure, the number of BM layers can vary without training
concerns.

The disclosed BM neural network provides recognition
accuracy close to that of classical neural networks, espe-
cially if converting only computationally complex parts, but
improves inference speed. The disclosed training method
can be developed, for example, to allow training from
scratch and improve results for BM fully-connected layers.

In summary, a bipolar morphological neuron model and a
bipolar morphological layer model are disclosed. The mod-
els use only operations of addition, subtraction, maximum,
and/or minimum inside the neuron, and exponent and loga-
rithm as activation functions for the layer. Unlike existing
morphological neural networks, the models approximate the
classical computations and produce better recognition
results.

A layer-by-layer approach to training the bipolar morpho-
logical neural networks is also disclosed. In a further
embodiment, an incremental approach for separate neurons
could be used to produce even higher accuracy. Neither of



US 11,995,152 B2

25

these approaches require special training algorithms. Rather,
both of these approaches can use a variety of gradient
descent training algorithms.

To demonstrate the efficiency of the disclosed model, a
classical convolutional neural network was used. The con-
volutional layers of the classical convolutional neural net-
work were converted and pre-trained into bipolar morpho-
logical layers. Experiments on MNIST and MRZ
recognition and document binarization demonstrated only
moderate decreases in accuracy after the conversion and
training. The faster inference speeds provided by the bipolar
morphological model may be very useful in mobile and
embedded systems.

The above description of the disclosed embodiments is
provided to enable any person skilled in the art to make or
use the invention. Various modifications to these embodi-
ments will be readily apparent to those skilled in the art, and
the general principles described herein can be applied to
other embodiments without departing from the spirit or
scope of the invention. Thus, it is to be understood that the
description and drawings presented herein represent a pres-
ently preferred embodiment of the invention and are there-
fore representative of the subject matter which is broadly
contemplated by the present invention. It is further under-
stood that the scope of the present invention fully encom-
passes other embodiments that may become obvious to those
skilled in the art and that the scope of the present invention
is accordingly not limited.

Combinations, described herein, such as “at least one of
A, B, or C,” “one or more of A, B, or C,” “at least one of A,
B, and C,” “one or more of A, B, and C,” and “A, B, C, or
any combination thereof” include any combination of A, B,
and/or C, and may include multiples of A, multiples of B, or
multiples of C. Specifically, combinations such as “at least
one of A, B, or C,” “one or more of A, B, or C,” “at least one
of A, B, and C,” “one or more of A, B, and C,” and “A, B,
C, or any combination thereof” may be A only, B only, C
only, Aand B, A and C, B and C, or A and B and C, and any
such combination may contain one or more members of its
constituents A, B, and/or C. For example, a combination of
A and B may comprise one A and multiple B’s, multiple A’s
and one B, or multiple A’s and multiple B’s.

What is claimed is:
1. A method comprising using at least one hardware
processor to:

convert an initial neural network into a bipolar morpho-
logical neural network by, for one or more convolu-
tional layers in the initial neural network, converting
the convolutional layer into a bipolar morphological
layer by replacing each calculation of

wherein x is an input in an input vector that has a length
N, and w is a weight, with a calculation of

exp max(y; + vy)
j

wherein exp is an exponential function, max identifies
a maximum, y is a new input derived from x, and v
is a new weight derived from w; and

20

25

30

35

45

50

55

60

65

26

train each bipolar morphological layer in the bipolar
morphological neural network layer by layer,

wherein each bipolar morphological layer processes posi-
tive and negative parts of x separately but in a same
manner, and

wherein a structure of the bipolar morphological layer is:

exp max(In ReLU(x;) + v?) — exp max(In ReLU(x;) + v}) -
j j
exp max(In ReLU(-x;) + v?) +expmax(ln ReLU(—x;)+ v}) wherein
j j

Jio {m [wil, if (=1¥w; >0
J

—o0, otherwise

wherein In is a natural logarithm.

2. The method of claim 1, wherein training the bipolar
morphological neural network comprises, sequentially from
first to last, for each bipolar morphological layer:

training the bipolar morphological layer; and,

after training the bipolar morphological layer and before

any subsequent training, freezing a structure and
weights of the bipolar morphological layer, such that
the structure and weights of the bipolar morphological
layer do not change during the subsequent training.

3. The method of claim 1, wherein the initial neural
network has a U-Net architecture.

4. The method of claim 1, further comprising using the at
least one hardware processor to execute the trained bipolar
morphological neural network to complete a task that pro-
duces an output from an input.

5. The method of claim 4, wherein the input comprises an
image, and wherein the task comprises object recognition
within the image.

6. The method of claim 4, wherein the input comprises an
image, and wherein the task comprises text recognition
within the image.

7. The method of claim 4, wherein the input comprises an
image, wherein the task comprises classifying each pixel in
the image into one of two classes, and wherein the output
comprises a binarization of the image.

8. The method of claim 7, wherein the initial neural
network has a U-Net architecture.

9. The method of claim 7, wherein the two classes consist
of foreground and background.

10. The method of claim 4, further comprising using the
at least one hardware processor to generate the input by:

converting an input image to grayscale; and

extracting a plurality of patches from the grayscale input

image, wherein each of the plurality of patches is an
input to the trained bipolar morphological neural net-
work.

11. The method of claim 1, further comprising using the
at least one hardware processor to, before converting the
initial neural network into the bipolar morphological neural
network, train the initial neural network.

12. The method of claim 1, further comprising using the
at least one hardware processor to, after training each bipolar
morphological layer in the bipolar morphological neural
network layer by layer, training a remainder of the bipolar
morphological neural network without changing a structure
and weights of any bipolar morphological layers in the
bipolar morphological neural network.

13. A method of comprising using at least one hardware
processor to:



US 11,995,152 B2

27

convert an initial neural network into a bipolar morpho-
logical neural network by, for one or more convolu-
tional layers in the initial neural network, converting
the convolutional layer into a bipolar morphological
layer by replacing each calculation of

wherein x is an input in an input vector that has a length
N, and w is a weight, with a calculation of

expmax(y; +v;)
J

wherein exp is an exponential function, max identifies
a maximum, y is a new input derived from x, and v
is a new weight derived from w, and
train each bipolar morphological layer in the bipolar
morphological neural network layer by layer,
wherein converting an initial neural network into a bipolar
morphological neural network further comprises, for
one or more fully-connected layers in the initial neural
network, converting the fully-connected layer into a
bipolar morphological layer by replacing an operation
of

»
J= 0[21@) w(p, @)+ b(q)] wherein
=1

g=1,0

wherein [ is an input to the fully-connected layer, J is
an output from the fully-connected layer, ¢ is a
nonlinear activation function, P is a number of inputs
I, Q is a number of neurons in the fully-connected
layer, w(p, q) is a weight for input p and neuron q,
and b(q) is a bias for neuron q,
with an operation of

J = o(exp max}_ (InlZ(p)] +v* (p, ¢)) — exp max_; (nl-L(p)] +v' (p, ¢)) -

exp max,_; (InlZ(p)| + v (p, @) + exp max,_, (In|-I(p)] + v (p, @) + b(g))

wherein v*(p, q) is a new weight for a positive part of
input p and neuron g, and wherein v (p, q) is a new
weight for a negative part of input p and neuron q.

14. The method of claim 1, wherein all convolutional
layers in the initial neural network are converted into bipolar
morphological layers.

15. The method of claim 14, wherein the convolutional
layers in the initial neural network are the only layers in the
initial neural network that are converted into bipolar mor-
phological layers.

16. A system comprising:

at least one hardware processor; and

one or more software modules that are configured to,

when executed by the at least one hardware processor,
convert an initial neural network into a bipolar mor-
phological neural network by, for one or more con-

20

25

35

40

50

55

60

65

28

volutional layers in the initial neural network, con-
verting the convolutional layer into a bipolar
morphological layer by replacing each calculation of

wherein x is an input in an input vector that has a
length N, and w is a weight,
with a calculation of

exp max(yj + vj)
j

wherein exp is an exponential function, max identi-
fies a maximum, y is a new input derived from x,
and v is a new weight derived from w, and
train each bipolar morphological layer in the bipolar
morphological neural network layer by layer,
wherein each bipolar morphological layer processes
positive and negative parts of x separately but in a
same manner, and
wherein a structure of the bipolar morphological layer
is:

o(exp max)l; (In x} +v7) —expmaxL, (In x% +v7) -

expmax_; (In xj +v}) + expmax’; (In x; +v;) +v,) wherein

o X5 x; >0
7 0, x;<0
_ —xj, x;<0
X =

7 0, x;=0

e {m [wil, if (=Dfw; >0

4 —o0, otherwise

wherein In is a natural logarithm.

17. A non-transitory computer-readable medium having
instructions stored thereon, wherein the instructions, when
executed by a processor, cause the processor to:

convert an initial neural network into a bipolar morpho-

logical neural network by, for one or more convolu-
tional layers in the initial neural network, converting
the convolutional layer into a bipolar morphological
layer by replacing each calculation of

wherein X is an input in an input vector that has a length
N, and w is a weight, with a calculation of

exp max(y; +v;)
J

wherein exp is an exponential function, max identifies
a maximum, y is a new input derived from x, and v
is a new weight derived from w; and
train each bipolar morphological layer in the bipolar
morphological neural network layer by layer,



US 11,995,152 B2
29 30

wherein each bipolar morphological layer processes posi-
tive and negative parts of x separately but in a same
manner, and

wherein a structure of the bipolar morphological layer is:

o(exp max/(In x} +v}) —exp max?; (In x} +v;) -
exp max’Ly (In x7 +v7) +exp maxiy(In x; +v5) +vy)
wherein 10

x*—{xj’ X =0
J 0, x;<0

{—xj, x; <0

0, x;=0 15
v/({lnlel, if (-Dfw; >0

T\ —co, otherwise

x; =

wherein In is a natural logarithm. 20

* * * * *



