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(57) ABSTRACT

Real-time monitored computed tomography (CT) recon-
struction for reducing a radiation does. During helical CT
scanning of a target object, projections may be acquired 1n
either a tull mode which subjects the target object to a tull
radiation dose, or a reduced mode which subjects the target
object to a reduced radiation dose (e.g., by reducing the
number of projections acquired, reducing the exposure time,
etc.). After a sector 1s acquired 1n the tull mode, a slice of the
target object that 1s influenced by that sector 1s 1dentified,
and a CT mmage of that slice 1s reconstructed using projec-
tions that have been previously acquired for that slice. When
a stopping rule 1s satisfied based on this partial reconstruc-
tion, the full mode 1s switched to the reduced mode, and at
least one subsequent sector 1s acquired 1n the reduced mode.
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REAL-TIME MONITORED COMPUTED
TOMOGRAPHY (CT) RECONSTRUCTION
FOR REDUCING RADIATION DOSE

BACKGROUND
Field of the Invention

The embodiments described herein are generally directed
to computed tomography (CT), and, more particularly, to
using real-time monitored CT reconstruction during helical
CT imaging to reduce the radiation dose to the target object
(e.g., of a subject).

Description of the Related Art

Computed tomography (CT) 1s on the front lines of
medical diagnostic 1maging. Methods of X-ray computed
tomography continue to evolve, along with methods of
automated medical 1mage analysis. The introduction of
helical computed tomography 1n the early 1990°s has pro-
vided the conditions necessary for quick scanning of com-
plete organs, such as the lungs or other sections of a
subject’s body. In helical computed tomography, a subject
(e.g., human patient) 1s moved slowly through a gantry, on
which an X-ray source (e.g., X-ray tube) 1s rotationally
mounted, during continuous rotation of the X-ray source
around the subject. Thus, the X-ray tube traverses a helical
trajectory around the subject, as illustrated in FIG. 1. The
X-rays are detected by detectors that are mounted on the
gantry, opposite the X-ray tube. The scanning quality asso-
ciated with the movement of the table feed through the
gantry have been studied, and multiple CT reconstruction
algorithms have been proposed to work with this helical CT
scanning process. See, e€.2., Bruder et al., “Single-slice
Rebinning Reconstruction i Spiral Cone-beam Computed
Tomography,” IEEE Trans. Med. Imaging, 19(9) 873-887,
2000, PMID: 11127602; and Schondube et al., “Exact j_ﬁ-
cient Handling of Interrupted [1lumination 1n Hehcal Cone-
Beam Computed Tomography with Arbitrary Pitch,” Tsin-
ghua Sci. Technol., 15(1):36-43, 2010; which are both
hereby icorporated herein by reference as 11 set forth 1n full.

Computed tomography 1s a powerful tool for medical
examination, and plays a particularly important role in the
investigation of acute diseases, such as the coronavirus
disease 2019 (COVID-19). However, helical computed
tomography requires several radiology specialists to manu-
ally ispect each scanning result. Shortages of medical staft,
resulting from the global pandemic, presented the need for
automated methods of COVID-19 screening.

Deep-learning frameworks are capable of detecting and
localizing lesions in CT scans. Thus, a deep-learning-based
model for automated COVID-19 detection 1n chest CT scans
has been developed, as described, for example, 1n Zhang et
al., “DoDNet: Learning to Segment Multi-Organ and
Tumors from Multiple Partially Labeled Datasets,” in Com-
puter Vision and Pattern Recognition (CVPR), pp. 1195-
1204, 2021, which 1s hereby incorporated herein by refer-
ence as 1f set forth in full. The DoDNet algorithm achieved
sensitivity and specificity values greater than 0.9, rendering
it clinically applicable. Rahimzadeh et al., “A Fully Auto-
mated Deep Learming-Based Network for Detecting
COVID-19 from a New and Large Lung CT Scan Dataset,”
Biomedical Signal Processing and Control, 68:102388,
2021, which 1s hereby incorporated herein by reference as 1f
set forth 1n full, presented a high-speed system for accurate
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2

scans. This system could work with three different neural
network (NN) models: Xception, ResNet50 v2, and Feature

Pyramid Network (FPN). In the classification stage for a
single 1image of a slice, the FPN model achieved 98.49%
accuracy on more than 7,996 test images.

However, CT scans require radiation exposure, which 1n
modern doses may contribute to the occurrence of cancer.
The total radiation dose for a CT scan 1s proportional to the
number of projections collected, radiation intensity, and
exposure time. While efforts have been made to achieve
reductions 1n each of these contributors, such reductions
inevitably lead to lower image quality. Different approaches
to the reconstruction phase have been developed to com-
pensate for this loss 1n 1image quality, as well as to address
an increase 1n i1mage artifacts. See, e.g., Matenine et al.,
“Potential of Iterative Reconstruction for Maxillofacial
Cone Beam CT Imaging: Technical Note,” Neuroradiology,
62(11):1511-1514, 2020; Talha et al., “Novel FBP Based
Sparse-View CT Reconstruction Scheme Using Self-Shap-
ing Spatial Filter Based Morphological Operations and
Scaled Reprojections,” Biomedical Signal Processing and
Control, 64:102323, 2021; and Villarraga-Gomez et al.,
“Eifect of the Number of Projections on Dimensional Mea-
surements with X-ray Computed Tomography,” Precision
Engineering, 66:445-456, 2020; which are all hereby incor-
porated herein by reference as 1f set forth in full. These
approaches include utilizing deep learning for regulariza-
tion, predicting missing projections, and performing recon-
struction from two orthogonal X-rays using a generative
adversarial network. See Zhang et al., “Metalnv-Net: Meta
Inversion Network for Sparse View CT Image Reconstruc-
HEE Transactions on Medical Imaging, 40(2):621-

tion,” IE
634, 2021; Anirudh et al., “Lose the Views: Limited Angle
CT Reconstructlon via Imphcr[ Sinogram Completion,” 1n
CVPR, pp. 6343-63352, 2018; and Ying et al., “X2CT-GAN:
Reconstructing CT from Biplanar X-rays with Generative
Adversarial Networks,” in CVPR, pp. 10619-10628, 2019;
which are all hereby incorporated herein by reference as it
set forth in full.

All of these approaches to dose reduction represent fixed
scanning protocols. One serious disadvantage of a fixed
scanning protocol 1s that the quality of reconstruction 1s not
known until the very end of the acquisition process, 1.¢., after
the whole radiation dose has already been administered. This
means that, 1t the reconstructed CT 1mage does not have
acceptable 1image quality (i.e., due to too much dose reduc-
tion), the CT scan will have to be repeated, thereby increas-
ing the total radiation dose to which the subject 1s exposed.

SUMMARY

Accordingly, systems, methods, and non-transitory com-
puter-readable media are disclosed for using real-time moni-
tored CT reconstruction during helical CT imaging to reduce
a radiation dose.

In an embodiment, a method comprises using at least one
hardware processor to, during helical computed tomography
(CT) scanning of a target object, after acquiring a set of
projections ifrom a sector 1n a full mode which subjects the
target object to a first radiation dose: 1dentily a slice of the
target object that 1s itluenced by the sector; reconstruct a
CT mmage of the i1dentified slice using projections that have
been previously acquired for the slice; determine whether or
not a stopping rule 1s satisfied based on the reconstructed CT
image; and, when determining that the stopping rule is
satisfied, switch from the full mode to a reduced mode which
subjects the target object to a second radiation dose, wherein
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the second radiation dose 1s less than the first radiation dose,
and acquire a set of projections from at least one subsequent

sector 1 the reduced mode.

The method may further comprise using the at least one
hardware processor to, when determiming that the stopping
rule 1s satisfied, determine a next sector that corresponds to
a next slice of the target object, wherein acquiring a set of
projections from at least one subsequent sector in the
reduced mode comprises acquiring a set of projections from
cach subsequent sector 1n the reduced mode until the deter-
mined next sector, and switching from the reduced mode to
the full mode prior to acquiring a set of projections from the
determined next sector. Determining a next sector that
corresponds to a start of a next slice of the target object may
comprise 1dentifying a lowest indexed sector that influences
the next slice.

Identitying a slice of the target object that 1s influenced by
the sector may comprise identifying a first slice, along a
trajectory of the helical C'T scanning, 1n a range of slices that
are 1nfluenced by the sector based on a geometry of the
helical CT scanning.

Determining whether or not a stopping rule 1s satisfied
based on the reconstructed CT 1mage may comprise: apply-
ing a classification model to the reconstructed CT 1mage to
produce a membership estimation representing a probability
that the reconstructed CT 1mage 1s a member of one of a
plurality of classes; and determiming whether or not the
stopping rule 1s satisfied based on the membership estima-
tion. Determining whether or not the stopping rule 1s satis-

fied based on the membership estimation may comprise:
when the membership estimation exceeds a prediction
threshold at least once within an initial subset of sectors
consisting of a first threshold number of sectors, determining
that the stopping rule 1s satisfied when the first threshold
number of sectors have been acquired; and, when the
membership estimation never exceeds the prediction thresh-
old within the 1nitial subset of sectors, determining that the
stopping rule 1s satisfied when a second threshold number of
sectors have been acquired following an initial sector for
which the membership estimation of the reconstructed CT
image exceeds the prediction threshold. The plurality of
classes may comprise a first class representing an absence of
an anomaly, and a second class representing a presence of an
anomaly. The anomaly may be COVID-19. The target object
may comprise at least one lung of a subject (e.g., human
subject). The classification model may comprise a neural
network. The neural network may be a deep-learning neural
network. The neural network may be a Feature Pyramid
Network (FPN).

The tull mode may acquire a first number of projections,
whereas the reduced mode acquires a second number of
projections that 1s less than the first number. The second
number may be at least 20% less than the first number.

The full mode may acquire each projection using a first
exposure time, whereas the reduced mode acquires each
projection using a second exposure time that 1s shorter than
the first exposure time.

Any of the methods may be embodied 1n executable
solftware modules of a processor-based system (e.g., CT
scanning system), such as a server, and/or 1n executable
instructions stored 1n a non-transitory computer-readable
medium.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present invention, both as to 1ts structure
and operation, may be gleaned 1 part by study of the
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accompanying drawings, in which like reference numerals
refer to like parts, and 1n which:

FIG. 1 1llustrates helical computed tomography, accord-
ing to an embodiment;

FIG. 2 1llustrates an example processing system, by which
one or more of the processes described herein, may be
executed, according to an embodiment;

FIG. 3 illustrates a CT scanning process, according to an
embodiment;

FIG. 4 1llustrates an example scanning protocol for reduc-
ing a radiation dose to a target object using automatic
per-slice classification, according to an embodiment;

FIGS. 5A and 5B illustrate the dynamics of per-slice
classification, according to an example experiment; and

FIG. 6 illustrates performance profiles for implementa-
tions of unmonitored and monitored per-slice stopping rules,
according to an embodiment.

DETAILED DESCRIPTION

In an embodiment, systems, methods, and non-transitory
computer-readable media are disclosed for using real-time
monitored CT reconstruction during helical C'T imaging to
reduce a radiation dose. After reading this description, 1t will
become apparent to one skilled in the art how to implement
the invention 1n various alternative embodiments and alter-
native applications. However, although various embodi-
ments of the present invention will be described herein, 1t 1s
understood that these embodiments are presented by way of
example and illustration only, and not limitation. As such,
this detailed description of various embodiments should not
be construed to limit the scope or breadth of the present
invention as set forth i the appended claims.

1. System Overview

FIG. 2 15 a block diagram illustrating an example wired or
wireless system 200 that may be used 1n connection with
various embodiments described herein. For example, system
200 may be used as or in conjunction with one or more of
the functions, processes, or methods (e.g., to store and/or
execute the software) described herein. System 200 can be
a server or any conventional personal computer, or any other
processor-enabled device that 1s capable of wired or wireless
data communication. Other computer systems and/or archi-
tectures may be also used, as will be clear to those skilled in
the art.

System 200 preferably includes one or more processors
210. Processor(s) 210 may comprise a central processing
unit (CPU). Additional processors may be provided, such as
a graphics processing unit (GPU), an auxiliary processor to
manage input/output, an auxiliary processor to perform
floating-point mathematical operations, a special-purpose
microprocessor having an architecture suitable for fast
execution of signal-processing algorithms (e.g., digital-sig-
nal processor), a slave processor subordinate to the main
processing system (e.g., back-end processor), an additional
microprocessor or controller for dual or multiple processor
systems, and/or a coprocessor. Such auxiliary processors
may be discrete processors or may be integrated with
processor 210. Examples of processors which may be used
with system 200 include, without limitation, any of the
processors (e.g., Pentium™, Core 17™, Xeon™, etc.) avail-
able from Intel Corporation of Santa Clara, California, any
of the processors available from Advanced Micro Devices,
Incorporated (AMD) of Santa Clara, California, any of the
processors (e.g., A series, M series, etc.) available from
Apple Inc. of Cupertino, any of the processors (e.g., Exy-
nos™) available from Samsung FElectronics Co., Ltd., of
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Seoul, South Korea, any of the processors available from

NXP Semiconductors N.V. of Eindhoven, Netherlands, and/
or the like.

Processor 210 1s preferably connected to a communica-
tion bus 205. Communication bus 205 may include a data
channel for facilitating information transfer between storage
and other peripheral components of system 200. Further-
more, communication bus 205 may provide a set of signals
used for communication with processor 210, including a
data bus, address bus, and/or control bus (not shown).
Communication bus 205 may comprise any standard or
non-standard bus architecture such as, for example, bus
architectures compliant with industry standard architecture
(ISA), extended industry standard architecture (EISA),
Micro Channel Architecture (MCA), peripheral component
interconnect (PCI) local bus, standards promulgated by the
Institute of Electrical and Electronics Engineers (IEEE)

including IEEE 488 general-purpose interface bus (GPIB),

IEEE 696/S-100, and/or the like.

System 200 preferably includes a main memory 2135 and
may also include a secondary memory 220. Main memory
215 provides storage of instructions and data for programs
executing on processor 210, such as any of the software
discussed herein. It should be understood that programs
stored 1in the memory and executed by processor 210 may be
written and/or compiled according to any suitable language,
including without limitation C/C++, Java, JavaScript, Perl,
Visual Basic, NET, and the like. Main memory 215 1s
typically semiconductor-based memory such as dynamic
random access memory (DRAM) and/or static random
access memory (SRAM). Other semiconductor-based
memory types include, for example, synchronous dynamic
random access memory (SDRAM), Rambus dynamic ran-
dom access memory (RDRAM), ferroelectric random access
memory (FRAM), and the like, including read only memory
(ROM).

Secondary memory 220 1s a non-transitory computer-
readable medium having computer-executable code (e.g.,
any of the software disclosed herein) and/or other data
stored thereon. The computer software or data stored on
secondary memory 220 1s read into main memory 215 for
execution by processor 210. Secondary memory 220 may
include, for example, semiconductor-based memory, such as
programmable read-only memory (PROM), erasable pro-
grammable read-only memory (EPROM), electrically eras-
able read-only memory (EEPROM), and flash memory
(block-oriented memory similar to EEPROM).

Secondary memory 220 may optionally include an inter-
nal medium 225 and/or a removable medium 230. Remov-
able medium 230 1s read from and/or written to 1n any
well-known manner. Removable storage medium 230 may
be, for example, a magnetic tape drive, a compact disc (CD)
drive, a digital versatile disc (DVD) drive, other optical
drive, a flash memory drive, and/or the like.

In alternative embodiments, secondary memory 220 may
include other similar means for allowing computer programs
or other data or instructions to be loaded into system 200.
Such means may include, for example, a communication
interface 240, which allows software and data to be trans-
ferred from external storage medium 245 to system 200.
Examples of external storage medium 245 include an exter-
nal hard disk drive, an external optical drive, an external
magneto-optical drive, and/or the like.

As mentioned above, system 200 may include a commu-
nication interface 240. Communication interface 240 allows
software and data to be transterred between system 200 and
external devices (e.g. printers), networks, or other informa-
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6

tion sources. For example, computer software or executable
code may be transierred to system 200 from a network
server via communication interface 240. Examples of com-
munication intertace 240 include a built-in network adapter,
network interface card (NIC), Personal Computer Memory
Card International Association (PCMCIA) network card,
card bus network adapter, wireless network adapter, Uni-
versal Serial Bus (USB) network adapter, modem, a wireless
data card, a communications port, an inifrared interface, an
IEEE 1394 fire-wire, and any other device capable of
interfacing system 200 with a network or another computing
device. Communication interface 240 preferably i1mple-
ments 1ndustry-promulgated protocol standards, such as
Ethernet IEEE 802 standards, Fiber Channel, digital sub-
scriber line (DSL), asynchronous digital subscriber line
(ADSL), frame relay, asynchronous transtfer mode (ATM),
integrated digital services network (ISDN), personal com-
munications services (PCS), transmission control protocol/
Internet protocol (TCP/IP), serial line Internet protocol/point
to point protocol (SLIP/PPP), and so on, but may also
implement customized or non-standard interface protocols
as well.

Software and data transferred via communication inter-
face 240 are generally 1n the form of electrical communi-
cation signals 255. These signals 255 may be provided to
communication interface 240 via a communication channel
250. In an embodiment, communication channel 250 may be
a wired or wireless network, or any variety of other com-
munication links. Communication channel 250 carries sig-
nals 255 and can be implemented using a variety of wired or
wireless communication means including wire or cable,
fiber optics, conventional phone line, cellular phone link,
wireless data communication link, radio frequency (“RF”)
link, or infrared link, just to name a few.

Computer-executable code (e.g., computer programs,
such as the disclosed software) 1s stored 1n main memory
215 and/or secondary memory 220. Computer-executable
code can also be received via communication interface 240
and stored 1n main memory 215 and/or secondary memory
220. Such computer programs, when executed, enable sys-
tem 200 to perform the various functions of the disclosed
embodiments as described elsewhere herein.

In this description, the term “computer-readable medium”
1s used to refer to any non-transitory computer-readable
storage media used to provide computer-executable code
and/or other data to or within system 200. Examples of such
media include main memory 2135, secondary memory 220
(including internal memory 225, removable medium 230,
and external storage medium 245), and any pernipheral
device communicatively coupled with communication inter-
tace 240 (including a network information server or other
network device). These non-transitory computer-readable
media are means for providing soitware and/or other data to
system 200.

In an embodiment that 1s implemented using soitware, the
soltware may be stored on a computer-readable medium and
loaded 1nto system 200 by way of removable medium 230,
I/O 1nterface 235, or communication interface 240. In such
an embodiment, the software 1s loaded 1nto system 200 1n
the form of electrical communication signals 255. The
solftware, when executed by processor 210, preferably
causes processor 210 to perform one or more of the pro-
cesses and functions described elsewhere herein.

In an embodiment, I/O interface 233 provides an interface
between one or more components of system 200 and one or
more input and/or output devices. Example input devices
include, without limitation, sensors, keyboards, touch
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screens or other touch-sensitive devices, cameras, biometric
sensing devices, computer mice, trackballs, pen-based point-
ing devices, and/or the like. Examples of output devices
include, without limitation, other processing devices, cath-
ode ray tubes (CRTs), plasma displays, light-emitting diode
(LED) displays, liquid crystal displays (LCDs), printers,
vacuum fluorescent displays (VFDs), surface-conduction
clectron-emitter displays (SEDs), field emission displays
(FEDs), and/or the like. In some cases, an input and output
device may be combined, such as in the case of a touch panel
display (e.g., mn a smartphone, tablet, or other mobile
device).

System 200 may also include optional wireless commu-
nication components that facilitate wireless communication
over a voice network and/or a data network. The wireless
communication components comprise an antenna system
270, a radio system 2635, and a baseband system 260. In
system 200, radio frequency (RF) signals are transmitted
and received over the air by antenna system 270 under the
management of radio system 265.

In an embodiment, antenna system 270 may comprise one
or more antennae and one or more multiplexors (not shown)
that perform a switching function to provide antenna system
270 with transmit and receive signal paths. In the receive
path, received RF signals can be coupled from a multiplexor
to a low noise amplifier (not shown) that amplifies the
received RF signal and sends the amplified signal to radio
system 263.

In an alternative embodiment, radio system 263 may
comprise one or more radios that are configured to commu-
nicate over various Irequencies. In an embodiment, radio
system 265 may combine a demodulator (not shown) and
modulator (not shown) in one integrated circuit (IC). The
demodulator and modulator can also be separate compo-
nents. In the incoming path, the demodulator strips away the
RF carrier signal leaving a baseband receive audio signal,
which 1s sent from radio system 2635 to baseband system

260.

If the recerved signal contains audio information, then
baseband system 260 decodes the signal and converts 1t to an

analog signal. Then the signal 1s amplified and sent to a
speaker. Baseband system 260 also receives analog audio
signals from a microphone. These analog audio signals are
converted to digital signals and encoded by baseband system
260. Baseband system 260 also encodes the digital signals
for transmission and generates a baseband transmit audio
signal that 1s routed to the modulator portion of radio system
265. The modulator mixes the baseband transmit audio
signal with an RF carrier signal, generating an RF transmait
signal that 1s routed to antenna system 270 and may pass
through a power amplifier (not shown). The power amplifier
amplifies the RF transmit signal and routes it to antenna
system 270, where the signal 1s switched to the antenna port
for transmission.

Baseband system 260 1s also communicatively coupled
with processor(s) 210. Processor(s) 210 may have access to
data storage areas 215 and 220. Processor(s) 210 are pret-
erably configured to execute instructions (1.e., computer
programs, such as the disclosed software) that can be stored
in main memory 215 or secondary memory 220. Computer
programs can also be recerved from baseband processor 260
and stored 1 main memory 210 or in secondary memory
220, or executed upon receipt. Such computer programs,
when executed, can enable system 200 to perform the
various functions of the disclosed embodiments.
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2. Process Overview

Embodiments of processes for using real-time monitored
CT reconstruction during helical CT 1imaging to reduce a
radiation dose will now be described in detail. It should be
understood that the described processes may be embodied in
one or more software modules that are executed by one or
more hardware processors (e.g., processor 210), for
example, as a computer program or soitware package. The
described processes may be implemented as instructions
represented 1 source code, object code, and/or machine
code. These 1mstructions may be executed directly by hard-
ware processor(s) 210, or alternatively, may be executed by
a virtual machine operating between the object code and
hardware processor(s) 210.

Alternatively, the described processes may be imple-
mented as a hardware component (e.g., general-purpose
processor, mtegrated circuit (IC), application-specific inte-
grated circuit (ASIC), digital signal processor (DSP), field-
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, etc.), combi-
nation of hardware components, or combination of hardware
and software components. To clearly illustrate the inter-
changeability of hardware and software, various illustrative
components, blocks, modules, circuits, and steps are
described herein generally in terms of their functionality.
Whether such functionality 1s implemented as hardware or
soltware depends upon the particular application and design
constraints 1mposed on the overall system. Skilled persons
can 1mplement the described functionality 1 varying ways
for each particular application, but such implementation
decisions should not be interpreted as causing a departure
from the scope of the invention. In addition, the grouping of
functions within a component, block, module, circuit, or step
1s Tor ease of description. Specific functions or steps can be
moved from one component, block, module, circuit, or step
to another without departing from the invention.

Furthermore, while the processes, described herein, are
illustrated with a certain arrangement and ordering of sub-
processes, each process may be implemented with fewer,
more, or different subprocesses and a different arrangement
and/or ordering of subprocesses. In addition, it should be
understood that any subprocess, which does not depend on
the completion of another subprocess, may be executed
before, after, or in parallel with that other independent
subprocess, even 1f the subprocesses are described or 1llus-
trated 1n a particular order.

2.1. Introduction

To address the problems associated with fixed scanning
protocols, embodiments utilize monitored reconstruction.
See, e.g., Bulatov et al., “Monitored Reconstruction: Com-
puted Tomography as an Anytime Algorithm,” IEEE Access,

8:110759-110774, 2020; and U.S. patent application Ser.
No. 17/180,397, titled “Systems and Methods for Monitored
Tomographic Reconstruction,” filed on Feb. 19, 2021; which
are both hereby incorporated herein by reference as 1f set
forth 1n full. Monitored reconstruction focuses on real-time
estimation of whether the information obtained during CT
scanning 1s suilicient for an acceptable reconstruction. It
should be understood that, as used herein, the term “real-
time” or “in real time” refers to an event (e.g., partial CT
reconstruction, classification, and application of a stopping
rule) that occurs contemporaneously with another event
(e.g., projection acquisition), as dictated by ordinary delays
between the two events (e.g., processing and/or communi-
cation latencies), and does not require the two events to
occur perfectly simultaneously.




US 12,167,927 B2

9

The CT scanning process may stop at different times for
different target objects, with an increase of mean eflfective-
ness 1 terms of the tradeofl between the quality of the
reconstructed CT 1image and the administered radiation dose.
Mean reduction of the dose, while retaining the same mean
accuracy compared to a fixed scanning protocol, has been
demonstrated using the data obtained with a laboratory
microtomography setup and a nano X-ray CT setup in the
case of reconstructing two-dimensional sections with a
random protocol for acquiring X-ray projections. See Bula-
tov et al. (2020); and Bulatov et al., “Monitored Tomo-
graphic Reconstruction—an Advanced Tool to Study the 3D
Morphology ofNanomaterials,” Nanomaterials, 11(10),
2021, art. no. 2524, which 1s hereby incorporated herein by
reference as 11 set forth 1n full.

In an embodiment, a reduction in radiation dose 1s
achieved during helical CT scanning by using a monitored
reconstruction process that, instead of analyzing the quality
of the reconstructed results using a quality metric, utilizes a
pre-trained anomaly detection neural network model (e.g.,
COVID-19 detection neural network model) as an “expert.”
The scanning protocol may perform partial reconstruction of
the slices of the target object volume, and, based on the
neural network output for those partially reconstructed
slices, decide to reduce the frequency of the projections
obtained for portions of the scannming process. This can
reduce the overall radiation dose, while retaining the accu-
racy of predictions.

FIG. 3 i1llustrates a CT scanning process, according to an
embodiment. It should be understood that the elements 1n
FIG. 3 are simplified for ease of understanding. In general,
a target object 310 moves relative to a detector ring 320 of
a CT machine. A gantry, comprising one or more X-ray
detectors 322 and an X-ray source 324 (e.g., X-ray tube) on
an opposite side of the gantry from the X-ray detector(s)
322, rotates around detector ring 320 to produce projections
of slices of target object 310 from a plurality of positions
along a helical or spiral trajectory (illustrated in FIG. 1), as
target object 310 moves through the center opening in
detector ring 320. In conventional systems, target object 310
moves through detector ring 320 (e.g., on a table that 1s fed
through detector ring 320), while detector ring 320 remains
stationary. However, 1n an alternative system, detector ring
320 could instead move around target object 310 while
target object 310 remains stationary, or both detector ring
320 and target object 310 could move (e.g., 1n opposite
directions). Thus, when target object 310 1s described herein
as moving relative to detector ring 320, it should be under-
stood that this refers to a relative change in position that may
result from one or both of target object 310 and detector ring,
320 moving.

As X-ray source 324 rotates around detector ring 320, a
projection of a slice of target object 310 1s captured by
detectors 322 from each of a plurality of sectors s. In other
words, the helical trajectory of X-ray source 324, relative to
target object 310, 1s divided 1nto S sectors s, with each sector
s having the same angular length. In addition, target object
310 1s divided mto K slices. The number K of slices is
determined by the hardware configuration, the parameters of
the CT scanning process, and the reconstruction method.

In an embodiment, the CT scanming process satisfies the
tollowing four conditions:

Firstly, while X-ray source 324 1s rotating inside a sector

s&{1, 2, . .., S}, a fixed number of projections are
acquired (1.e., by X-ray detector(s) 322). The acquired
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projections for each sector s are added to the total set
of X-ray projections that are used to perform recon-
struction of the CT 1mage.

Secondly, the set of projections acquired in a sector s&{1,

2, ..., S} influence only a limited range of slices
represented by the indices [L(s), R(s)], where 1=L(s)
R(s)=K. The indices L(s) and R(s), representing the
range of slices that are influenced by the projections
acquired 1n a sector s, may be calculated from experi-
mental geometry, such that they are known 1n advance
for each sector (e.g., recorded 1n a lookup table or other
data structure stored 1n main memory 2135 and/or sec-
ondary memory 220, implemented mn an algorithm
executed by processor(s) 210, etc.). In addition, for
each slice k, the index of the earliest sector s whose
projections influence the reconstruction of slice k, 1s
known 1n advance (e.g., recorded 1n a lookup table or
other data structure stored in main memory 215 and/or
secondary memory 220, implemented in an algorithm
executed by processor(s) 210, etc.). In other words, for
each slice k, the sector s with the smallest index, such
that L(s)=k, can be quickly determined. The index of
this sector s can be denoted L™'(s). Thus, L(s) receives
a sector mdex as an input, and outputs the slice index
of the first slice (e.g., lowest slice index), along the
scanning path, that 1s influenced by the sector at the
inputted sector index. Conversely, L™'(s), which is the
inverse function of L(s), receives a slice index as an
input, and outputs the sector index of the first sector
(e.g., lowest sector index), along the helical scanning
trajectory, that influences the slice at the inputted slice
index.

Thirdly, during the CT scanning process, the frequency of

projection acquisition for each sector can be dynami-
cally changed before the projection acquisition in that
sector has begun. In particular, there are at least two
modes of projection acquisition: (1) a full mode, n
which the maximum number (e.g., set in advance with
the scanning protocol) of projections are acquired 1n a
sector s; and (11) a reduced mode, in which less than the

maximum number of projections are acquired in a
sector s (1.e., only a partial subset of the projections are
acquired, relative to the full mode). Importantly, in the
reduced mode, since fewer projections are acquired, the
radiation dose to which target object 310 1s exposed 1s
reduced relative to the full mode. In an alternative
embodiment, the reduced mode may acquire projec-
tions 1n some other way that reduces the radiation dose
relative to the full mode. For example, the reduced
mode may acquire the same number of projections as
the full mode, but with a shorter exposure time per
projection than the full mode. Thus, more generally, the
reduced mode subjects a target object to a lower
radiation dose than the full mode, at the expense of the
quality of the reconstruction result.

Fourthly, for each slice k, an intermediate reconstruction

result can be obtained at any time using the current
accumulation of projections that influence that slice k.
In addition, for each reconstruction result, whether
partial or full, a classification result C(k)&[0,1], can be
obtained. FEach classification result C(k) can be inter-
preted as a membership estimation for a disease or
other anomaly class. For example, the classification
result C(k) may represent an estimation that slice k

exhibits COVID-19. However, i1t should be understood
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that the classification result may represent a member-
ship estimation for a different disorder or anomaly or
other sets of classes.
2.2. Scanning Protocol
FIG. 4 1llustrates an example scanning protocol 400 for
reducing a radiation dose to a target object using automatic
per-slice classification, according to an embodiment. At a
high level, protocol 400 utilizes a per-slice stopping rule,
comprising one or more stopping criteria, to switch between
a full mode, which exposes the target object to a normal
radiation dose, and a reduced mode, which exposes the
target object to a reduced radiation dose. .

T'he varniable s
represents the current sector for which projections are
acquired, the variable m represents the current projection
acquisition mode (1.e., either the full mode or the reduced
mode), and the variable n represents the index of the next
sector to be processed 1n the full mode.

In subprocess 405, the vaniables used by protocol 400 are
initialized. In an embodiment, the current sector s 1s 1nitial-
1zed to the first sector 1n the entire helical scanning trajec-
tory, and the current mode m 1s mitialized to the full mode.
Thus, protocol 400 starts from the first sector and 1n the full
mode. In addition, the index n of the next sector to be
processed 1n the full mode may be set to a value representing,
infinity. It should be understood that the value representing
infinity may be any value that does not correspond to an
index of a valid sector (e.g., the largest number that can be
represented by the data type used for the variable n, or
otherwise well above the highest sector index).

In subprocess 410, it 1s determined whether the current
mode m 1s the full mode. If the current mode m 1s the
reduced mode (i.e., “No”” 1n subprocess 410), protocol 400
acquires a reduced number of projections from current
sector s 1n subprocess 415. Otherwise, 11 the current mode m
1s the Tull mode (i.e., “Yes™ 1n subprocess 410), protocol 400
acquires the full number of projections from current sector
s 1n subprocess 420. In other words, a full or reduced set of
projections are acquired based on the current projection
acquisition mode, as indicated by the current value of
variable m.

In the event that a Tull number of projections are acquired
from sector s (1.e., subprocess 420 1s performed), the slice at
index L(s) 1s partially reconstructed in subprocess 425.
Then, 1 subprocess 430, 1t 1s determined whether or not the
stopping rule, comprising one or more stopping criteria, 1s
satisfied for the slice at index L(s). If the stopping rule 1s
satisiied for the slice at index L(s) (1.e., “Yes” 1n subprocess
430), protocol 400 sets the index n of the next slice to be
processed in the full mode to L™'(L(s)+1), and sets the
projection acquisition mode m to the reduced mode. In this
case, L™'(L(s)+1) is the index of the first sector that influ-
ences the slice that immediately follows the slice at index
L(s). Otherwise, 1f the stopping rule 1s not satisfied for the
slice at index L(s) (1.e., “No” 1n subprocess 430), protocol
400 proceeds to the next sector in subprocess 440, without
modifying variables n or m. In particular, in subprocess 440,
the 1ndex of the current sector s 1s incremented by a value of
one.

On the other hand, 1n the event that a reduced number of
projection are acquired from sector s (1.e., subprocess 415 1s
performed), protocol 400 proceeds to the next sector in
subprocess 440. Thus, after the stopping rule 1s satisfied 1n
an 1teration of subprocess 430, projections 1n all subsequent
sectors that influence the slice at index L(s) will be acquired
in the reduced mode. In other words, the reduced mode will
be maintained until the next slice (i.e., at index L(s)+1).
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In subprocess 445, 1t 1s determined whether or not the
value of the current sector s 1s equal to the value of index n.
If the value of the current sector s 1s equal to the value of
index n (1.e., “Yes” 1n subprocess 445), the current mode m
1s reset to the full mode, and the index n 1s reset to the 1nitial
value (e.g., the same value as 1n subprocess 405, such as the
value representing infinity), i subprocess 450. Then, pro-
tocol 400 proceeds to subprocess 455. Otherwise, 1 the
value of the current sector s 1s not equal to the value of index
n (1.e., “No” 1 subprocess 445), protocol 400 proceeds to
subprocess 455 without resetting variables m or n.

In subprocess 455, it 1s determined whether or not the CT
scanning process 1s complete (e.g., the entire desired portion
of target object 310 has been acquired). I the CT scanning
process 1s complete (1.e., “Yes” 1n subprocess 455), protocol
400 may end. Otherwise, 1f the CT scanning process 1s not
complete (1.e., “No” 1n subprocess 455), protocol 400
returns to subprocess 410 to acquire projections from the
next sector i the mode indicated by the value of current
mode m.

Notably, the reduced frequency of projection acquisition
in some of sectors s (i.e., 11 one or more iterations of
subprocess 415), mitiated by the satisfaction of the stopping
rule for one or more partially reconstructed slices (i.e., in
one or more iterations of subprocess 430), reduces the
radiation dose to which target object 310 1s exposed. This
monitored approach uses a per-slice stopping rule that
depends on the partial reconstruction results for a slice to
reduce the overall radiation dose to target object 310 without
a significant decrease 1n classification accuracy.

2.3. Example Per-Slice Stopping Rule

Each slice erther contains a set of features indicating the
target anomaly (e.g., COVID-19) or does not contain a set of
teatures indicating the target anomaly. Thus, the per-slice
ground truth may be represented as a single number 6&1{0,
1}, where 0 means that the slice does not present features
indicating the target anomaly, and 1 means that the slice does
present features indicating the target anomaly.

During protocol 400, each batch of projections, acquired
in full mode by subprocess 420, can be used to produce a
partial reconstruction 1n subprocess 4235. A partial recon-
struction refers to the reconstruction of a slice mto a CT
image from only a portion of the projection data acquired for
that slice. The consecutive addition of new projection data

should 1increase the CT 1mage quality and decrease the
amount and intensity of reconstruction artifacts in the CT
image. Thus, sectors acquired 1n full mode should supply
more information than sectors acquired in reduced mode.
However, sectors acquired in full mode will also result 1n
exposing target object 310 to a higher dose of radiation than
sectors acquired in reduced mode.

In subprocess 430, each partial reconstruction (e.g., from
subprocess 425) may be passed as an input to a classification
model, which may comprise a classification neural network,
other type of classifier, or an ensemble of such classifiers.
Over 1terations of this classification 1 subprocess 430, a
sequence of classifications C,,C,,...,C . ..., representing
network responses, will be obtained, 1n which C.&[0,1],
representing the value of the membership estimation for the
anomaly class (e.g., COVID-19 class). If a reconstruction 1s
stopped after n sectors, the total loss may be calculated as the
sum of the classification error and the total cost of the
obtained projections. Assuming that the total number of
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projections after processing n sectors 1s denoted as p(n) and
each projection has a fixed cost vy, this loss can be expressed
as:

Loss,=(C,—8|;+y-p()

The task of constructing a stopping rule for subprocess
430 1s to determine the stopping time N that minimizes the
expected total loss E(Loss,), based on the previously
obtained observations. Since this problem does not comply
with the monotone stopping problem, the method discussed
in Bulatov et al. cannot be directly applied.

To analyze the dynamics of the predicted classifications
C,,C,, ..., C, by aneural network, a random subset of
slices with equal thickness (e.g., 6 millimeters) were
selected from the COVID-CTset dataset, as described 1n
Rahimzadeh et al. For each original reconstruction, the
projections were simulated from the full data. Each slice had
a limited number of projections that could influence its
reconstruction. This number of projections may be referred
to as the “lifespan” of the slice, and can be directly calcu-
lated from the geometry of the experiment. In this particular
case, the lifespan of the slice consisted of 500 projections.
Thus, with a sector size of 10 projections, the lifespan of the
slice consisted of 30 sectors. In the experiment, random
consecutive sectors were excluded from the set of sectors
comprising the lifespan of each slice, and the slice was then
partially reconstructed from the non-excluded sectors (i.e.,
activated sectors). The FPN model was used on the partial
reconstructions of CT 1mages to obtain a potential “history”
of predictions C,, C,, ..., C,_ for each slice. This was done
on 80 slices, consisting of an even distribution between
negative final predictions and positive final predictions by
the FPN model.

FIGS. 5A and 5B illustrate the dynamics of per-slice FPN
predictions against the scale of the increasing number of
activated sectors for, given a full reconstruction, slices that
do not exhibit COVID-19 features (1.e., negative slices) and
slices that do exhibit COVID-19 features (1.e., posifive
slices), respectively, according to an example experlment
Each of FIGS. 5A and 5B illustrates the dynamics of three
examples slices, as well as the mean response across all
negative and positive slices, respectively. Notably, there is a
pattern to the responses. In particular, for both the negative
and positive slices, when there are only a few activated
sectors, the FPN output corresponds to the non-anomaly
class representing no COVID-19. However, as the number
of activated sectors increases, the FPN output quickly jumps
towards the anomaly class representing the presence of
COVID-19. This jump presumably represents a specific
response of the FPN to artifacts present in the partial
reconstructions. As the number of activated sectors further
increases, the dynamics differ for negative and positive
slices. For the negative slices, the FPN output eventually
quickly returns to the non-anomaly class representing no
COVID-19, presumably as the influence of artifacts sub-
sides. For the positive slices, the FPN output continues to
correspond to the anomaly class representing COVID-19.

In view of the observed pattern, two per-slice stopping
rules were evaluated. The first stopping rule that was evalu-
ated does not utilize monitoring. In contrast, the second
stopping rule that was evaluated relies on partial reconstruc-
tion results, and therefore, does utilize monitoring.

The first stopping rule comprises stopping the analysis of
a slice when the number of projections from sectors that
influence the slice reaches a cut-off threshold X:

N|(X)=X
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This first stopping rule does not require monitoring. In other
words, no real-time reconstructions need to be performed.
Thus, a protocol that utilizes this first stopping rule, while
capable of reducing a radiation dose, represents a fixed
scanning protocol.

The second stopping rule utilizes a cut-off threshold X, a
prediction threshold P, and a stopping threshold T-:

No(X, P, T) = max{X, T + n.(P))

— 00, 1f max{C,} =< P

s(F) = {min{n: C, }P},

otherwise

In other words, 1f the membership estimation that 1s output
by the neural network model for a slice (e.g., representing a
probability that the partially reconstructed slice L(s) from
subprocess 425 belongs to a class) does not exceed the
prediction threshold P during acquisition of the first X
sectors for that slice, the stopping rule 1s satisfied for the
slice (1.e., “Yes” 1n subprocess 430) after X sectors have
been acquired. Consequently, protocol 400 switches to the
reduced mode (e.g., in subprocess 435) for that slice once X
sectors have been acquired. Otherwise, if the membership
estimation that 1s output by the neural network model for the
slice spikes above the prediction threshold P at any point
during acquisition of the first X sectors for that slice,
protocol 400 switches to the reduced mode (e.g., 1n subpro-
cess 435) after T sectors have been acquired following the
sector n (P) during which the first such spike was observed,
but not before X sectors have been acquired. Notably, this
second stopping rule requires monitored reconstruction of
the slices of target object 310 (e.g., in subprocess 425), 1n
order to generate the sequence of predictions C,, C,, . . .,
C, (e.g., 1n subprocess 430).

FIG. 6 illustrates performance profiles for implementa-
tions of unmonitored per-slice stopping rule N, and moni-
tored per-slice stopping rule N,, with the vertical axis
denoting per-slice accuracy, according to an embodiment. In
the 1llustrated example, the value of X was varied for N,. For
N,, X=30, P=0.8, and the value of T was varied. Profile
points have been added to illustrate relevant threshold
values. As 1llustrated by the performance profiles, the mean
prediction error for a given slice at a given stopping point
depends on the mean number of activated sectors that were
used to reconstruct the slice. Comparing the curves of the
performance profiles, a lower point 1n the curve for one
stopping rule indicates a higher efficiency than the other
stopping rule, either because of a lower mean prediction
error given the same mean number of activated sectors or the
same mean prediction error given a lesser mean number of
activated sectors. Thus, the performance profiles demon-
strate that the performance of monitored stopping rule N,
surpasses unmonitored stopping rule N, for a certain range
of T (e.g., T=20 to 35). It should be understood that further
performance improvements may be achieved with different
values of X and/or P.

3. Experimental Results

For experimentation, the openly available COVID-CTset
dataset was used for the projections processed by protocol
400, and the pretrained classification neural network, FPN,
was used for COVID-19 classification 1n subprocess 430.
Howeyver, i1t should be understood that, 1n operation, protocol
400 will generally be applied to projections acquired 1n
real-time during a CT scanning process. In addition, any
suitable classification model (e.g., comprising a classifica-
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tion network, other classifier, or ensemble of such classifi-
ers) may be used i place of FPN to classity slices 1n
subprocess 430 (e.g., Xception or ResNet50 v2), and for any

target anomaly.
The COVID-CTset dataset contains 63,849 1mages from

3’77 patients, including 95 COVID-19 patients and 282
healthy persons. The images are three-dimensional lung CT
images. For each patient, there are up to 3 reconstructions
with slices of different thicknesses (e.g., 1.5 to 8 millimeters)
produced from the same projections.

In order to model and evaluate protocol 400, the source
data should be obtained, such that reconstructions can be
performed with a variable number of projections. However,
this source data 1s not available in the COVID-CTset dataset,
and 1s not generally available in any open data repository.
Thus, for the experiments, synthetic projections were cre-
ated from the reconstructions i the COVID-CTset dataset.
The information necessary to reproduce the projection
acquisition process (€.g., setup geometry, patient metadata,
scanning protocol, model of the CT scanner, etc.) was
avallable 1n the COVID-CTset dataset. However, there was
no information for the number of projections per rotation.
Thus, this value was selected to be halt of the maximum
available magnitude for the model of CT scanner (e.g., 600
out of 1200 projections per rotation). This selection was
empirically dertved to be close to the minimum value at
which reconstructions can be performed without serious loss
of quality. The collection of projections and the subsequent
reconstruction were performed using Astra-Toolbox
v1.9.9dev. See Palenstijn et al., “Performance Improvements
for Iterative Electron Tomography Reconstruction Using
Graphics Processing Units (GPUs),” Journal of Structural
Biology, 176(2):250-253, 2011; Aarle et al., “Fast and
Flexible X-ray Tomography Using the Astra Toolbox,” Opt.
Express, 24(22):25129-2314°7, October 2016; and Aarle et
al., ““The Astra Toolbox: A Platform for Advanced Algorithm
Development in Electron Tomography,” Ultramicroscopy,
157:35-477, 2015; which are all hereby incorporated herein
by reference as 11 set forth 1n full. The Feldkamp, Davis, and
Kress (FDK) algorithm was used as a starting reconstruction
point for the Simultaneous Iterations Reconstruction Tech-
nique (SIRT) algorithm with 500 iterations. See Gilbert,
“Iterative Methods for the Three-Dimensional Reconstruc-
tion of an Object from Projections,” Journal of Theoretical
Biology, 36(1):105-117, 1972, which 1s hereby incorporated
herein by reference as if set forth 1n full.

The adequacy of the described modeling process and the
sustainability of the pretrained neural network model to the
described modeling process was validated by simulating the
whole dataset and reproducing the results in Rahimzadeh et
al. on the simulated data. While the modeling process
yielded reconstructed slice images with slightly lower qual-
ity than the ongmmal COVID-CTset dataset, the FPN
response diflered for only 200 slices (1.e., 0.48% of the full
COVID-CTset dataset).

To quantitatively evaluate protocol 400, a subset of the
simulated data, consisting of a total of 229 slices, was
extracted for 6 randomly selected patients—three of whom
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Positive,
Positive,
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exhibited COVID-19, and three of whom did not exhibit
COVID-19. Alternative implementations of protocol 400
were applied to this subset using both the unmonitored
stopping rule N, and the monitored stopping rule N, within
a range ol control parameters. The reduced mode corre-
sponded to 20% fewer projections per sector than the full
mode, and the full mode consisted of acquiring 10 projec-
tions. The control parameters were chosen in accordance
with the properties of the experimental geometry. The lifes-
pan of a slice consisted of 50 sectors, which meant that a
cut-oil threshold X=30 would effectively result in always
taking a full set of projections from all sectors, regardless of
the mode. For the monitored stopping rule N,, a cut-ofl
threshold X=30, a prediction threshold P=0.8, and a stop-
ping threshold T selected from the value range [10, 30] were
used.

After modeling protocol 400 for each patient, the per-slice
prediction accuracy was measured, along with the reduction
in radiation dose (expressed 1n a relative number of per-
formed projections) relative to a fixed protocol 1n which all
sectors are activated with a full dose. In particular, the
accuracy was calculated as the mean ratio of the per-slice
predictions that coincide with the predictions obtained with
a Tull dose, and the dose was calculated as the mean ratio of
the acquired projections to the number of projections that
would be acquired 1t all sectors were acquired in the full
mode. The resulting measurements for protocol 400 are
depicted 1n the table below:

Parameter
Stopping Rule Value Accuracy (%) Dose (%)
Unmonitored (N) X = 30 89.1 68.2
X =35 93.5 78.2
X =40 96.1 R7.4
X =45 97.4 95.4
Monitored (N>) T =10 89.1 68.4
T =15 93.9 75.5
T =20 96.5 81.8
T = 30 98.6 86.9

The results demonstrate that the monitored stopping rule
N, exhibits Pareto improvement over the unmonitored stop-
ping rule N, . In particular, the monitored stopping rule N,,
with T=15, T=20, or T=30, all achieve higher mean per-slice
accuracy and lower mean administered dose than the
unmonitored stopping rule N, with X=35, X=40, and X=45,
respectively. Notably, the momitored stopping rule N, with a
stopping threshold T=30 achieved a per-slice prediction
accuracy ol 98.6%, relative to full projection acquisition,
with a mean dose reduction of 13.1%, whereas the unmoni-
tored stopping rule N, was not able to achieve such accuracy
even with a mean dose reduction of less than 5%.

The reductions 1n per-slice prediction accuracy and dose
for each of the six patients for which the modeling was
performed are depicted 1n the table below, with changes in
accuracy and radiation dose represented in percentages (%)
relative to a CT scanning process with no reduced mode:

N, (X =40) N, (X =45) N, (T = 20) N, (T = 30)
Accuracy Dose Accuracy Dose Accuracy Dose Accuracy Dose
-8.6 -12.1 —-3.7 -4.0 5.7 -12.1 —-5.7 -35.0
0.0 -12.1 -2.9 -4.0 0.0 -20.6 0.0 -15.1
0.0 -12.4 0.0 -4.3 -2.5 -12.3 0.0 -5.0
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-continued
N, (X = 40) N; (X =45) N, (T = 20) N> (T = 30)
Patient Accuracy Dose Accuracy Dose Accuracy Dose Accuracy Dose
Negative, -7.5 -14.2 -5.0 -6.6 -5.0 -23.5 0.0 -21.1
Negative, -4.7 -12.3 -2.3 -4.2 -7.0 -23.5 -2.3 -17.7
Negative, -2.8 -12.3 0.0 -4.2 0.0 —-15.7 0.0 -13.3
10

As 1llustrated, the improvement of monitored stopping
rule N, over unmonitored stopping rule N, was more sig-
nificant in the case of patients with COVID-19. Presumably,
this 1s due to the fact that, on some slices without COVID-19
teatures, the FPN does not change 1ts output at all, in which
case the momtored stopping rule N, stops earlier, resulting
in a larger dose reduction. However, 1t should be understood
that such slices can occur i both COVID-19 and non-
COVID-19 patients, but will typically occur at a higher
frequency 1in non-COVID-19 patients.

Notably, with the unmonitored stopping rule N,, the dose
reduction 1s virtually the same across all patients, whereas
the monitoring stopping rule N, resulted in different dose
reductions for different patients. In addition, not only does
the monitored stopping rule N, with a stopping threshold
T=30 achieve Pareto improvement over a fixed protocol, but
it also achieves Pareto improvement for each of the six
evaluated patients, with a maximum reduction in per-slice
prediction accuracy of 5.7% and a dose reduction i the

range of 5.0% to 21.1%.

As mentioned above, the experiment used a pre-trained
per-slice classifier FPN. This was purposeful to determine
whether it 1s possible to apply the variable-dose protocol 400
with real-time monitored reconstruction without having to
retrain the classification network. The results above dem-
onstrate that neural-network-based methods of tomographic
image analysis enable the construction of new and effective
scanning protocols with decreased radiation doses, by using
the neural network as an “expert” to judge whether or not
there 1s sutlicient diagnostic mnformation 1n a partial recon-
struction. Practically, protocol 400 could benefit from a
custom trained per-slice classifier, which may be robust
against artifacts that appear due to partial reconstruction, as
well as a more sophisticated stopping rule that 1s designed to
further increase the amount of dose reduction. However, the
particular implementation of protocol 400 should account
for the speed of current helical CT reconstruction algo-
rithms, to ensure that protocol 400 does not become a
prohibitive bottleneck to the overarching CT scanning pro-
cess. In any case, protocol 400 represents an application of
computer vision in medical imaging setups with automated
diagnostics, as well as a tool for decision support systems 1n
which the final diagnostic decision 1s made by a medical
proiessional.

The above description of the disclosed embodiments 1s
provided to enable any person skilled 1n the art to make or
use the invention. Various modifications to these embodi-
ments will be readily apparent to those skilled 1n the art, and
the general principles described herein can be applied to
other embodiments without departing from the spirit or
scope of the imnvention. Thus, 1t 1s to be understood that the
description and drawings presented herein represent a pres-
ently preferred embodiment of the mvention and are there-
fore representative of the subject matter which 1s broadly
contemplated by the present invention. It 1s further under-
stood that the scope of the present invention fully encom-
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passes other embodiments that may become obvious to those
skilled 1n the art and that the scope of the present invention
1s accordingly not limited.

Combinations, described herein, such as “at least one of
A, B, or C,” “one or more of A, B, or C,” “at least one of A,
B, and C,” “one or more of A, B, and C,” and “A, B, C, or
any combination thereol” include any combination of A, B,
and/or C, and may 1nclude multiples of A, multiples of B, or
multiples of C. Specifically, combinations such as “at least
one of A, B, or C,” “one or more of A, B, or C.,” “at least one
of A, B, and C.” “one or more of A, B, and C,” and “A, B,

C, or any combination thereol” may be A only, B only, C
only, Aand B, Aand C, B and C, or A and B and C, and any
such combination may contain one or more members of 1ts
constituents A, B, and/or C. For example, a combination of
A and B may comprise one A and multiple B’s, multiple A’s
and one B, or multiple A’s and multiple B’s.

What 1s claimed 1s:

1. A method comprising using at least one hardware
processor to, during helical computed tomography (CT)
scanning of a target object, after acquiring a set of projec-
tions from a sector in a full mode which subjects the target
object to a first radiation dose:

identily a slice of the target object that 1s influenced by the

sector;

reconstruct a CT 1mage of the identified slice using

projections that have been previously acquired for the
slice;

determine whether or not a stopping rule 1s satisfied based

on the reconstructed CT 1mage; and,

when determining that the stopping rule 1s satisfied,

switch from the full mode to a reduced mode which
subjects the target object to a second radiation dose,
wherein the second radiation dose 1s less than the
first radiation dose, and

acquire a set of projections from at least one subsequent
sector 1n the reduced mode.

2. The method of claim 1, further comprising using the at
least one hardware processor to, when determining that the
stopping rule 1s satisfied, determine a next sector that
corresponds to a next slice of the target object, wherein
acquiring a set of projections from at least one subsequent
sector 1n the reduced mode comprises acquiring a set of
projections from each subsequent sector in the reduced
mode until the determined next sector, and switching from
the reduced mode to the full mode prior to acquiring a set of
projections from the determined next sector.

3. The method of claim 2, wherein determining a next
sector that corresponds to a start of a next slice of the target
object comprises 1dentifying a lowest indexed sector that
influences the next slice.

4. The method of claim 1, wherein 1dentitying a slice of
the target object that 1s intluenced by the sector comprises
identifying a first slice, along a trajectory of the helical CT
scanning, 1n a range of slices that are influenced by the sector
based on a geometry of the helical CT scanning.
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5. The method of claim 1, wherein determining whether
or not a stopping rule 1s satisfied based on the reconstructed
CT 1mage comprises:
applying a classification model to the reconstructed CT
image to produce a membership estimation represent-
ing a probability that the reconstructed CT image 1s a
member of one of a plurality of classes; and

determining whether or not the stopping rule 1s satisfied
based on the membership estimation.

6. The method of claim 5, wherein determining whether
or not the stopping rule 1s satisfied based on the membership
estimation comprises:

when the membership estimation exceeds a prediction

threshold at least once within an 1nitial subset of sectors

consisting of a first threshold number of sectors, deter-
mining that the stopping rule 1s satisfied when the first
threshold number of sectors have been acquired; and,

when the membership estimation never exceeds the pre-
diction threshold within the initial subset of sectors,
determining that the stopping rule 1s satisfied when a
second threshold number of sectors have been acquired
following an 1nitial sector for which the membership
estimation of the reconstructed CT image exceeds the
prediction threshold.

7. The method of claim 5, wherein the plurality of classes
comprises a first class representing an absence of an
anomaly, and a second class representing a presence of an
anomaly.

8. The method of claim 7, wheremn the anomaly 1s
COVID-19.

9. The method of claim 8, wherein the target object
comprises at least one lung of a subject.

10. The method of claim 5, wherein the classification
model comprises a neural network.

11. The method of claim 10, wherein the neural network
1s a deep-learming neural network.

12. The method of claim 10, wherein the neural network
1s a Feature Pyramid Network (FPN).

13. The method of claim 1, wherein the full mode acquires
a first number of projections, and the reduced mode acquires
a second number of projections that 1s less than the first
number.

14. The method of claim 13, wherein the second number
1s at least 20% less than the first number.

15. The method of claim 1, wherein the full mode acquires
cach projection using a first exposure time, and the reduced
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mode acquires each projection using a second exposure time
that 1s shorter than the first exposure time.
16. A system comprising:
at least one hardware processor configured to control a
scanning mode of a computed tomography (CT) scan-
ner; and
software that 1s configured to, when executed by the at
least one hardware processor, during helical CT scan-
ning ol a target object, after acquiring a set of projec-
tions from a sector 1n a full mode which subjects the

target object to a first radiation dose
identily a slice of the target object that 1s influenced by

the sector,
reconstruct a CT 1mage of the identified slice using

projections that have been previously acquired for
the slice,
determine whether or not a stopping rule 1s satisfied
based on the reconstructed CT 1mage, and,
when determiming that the stopping rule 1s satisfied,
switch from the full mode to a reduced mode which
subjects the target object to a second radiation
dose, wherein the second radiation dose 1s less
than the first radiation dose, and
acquire a set of projections from at least one subse-
quent sector 1n the reduced mode.

17. A non-transitory computer-readable medium having
instructions stored therein, wherein the instructions, when
executed by a processor, cause the processor to, during
helical computed tomography (CT) scanning of a target
object, alter acquiring a set of projections from a sector 1n
a full mode which subjects the target object to a first
radiation dose:

identily a slice of the target object that 1s influenced by the

sector;

reconstruct a CT mmage of the identified slice using

projections that have been previously acquired for the
slice;

determine whether or not a stopping rule is satisfied based

on the reconstructed CT 1mage; and,

when determining that the stopping rule is satisfied,

switch from the full mode to a reduced mode which

subjects the target object to a second radiation dose,
wherein the second radiation dose 1s less than the first
radiation dose, and

acquire a set of projections from at least one subsequent

sector 1n the reduced mode.
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