
(54) MEMORY-EFFICIENT FEATURE
DESCRIPTORS FOR LOCALIZATION AND
CLASSIFICATION OF IDENTITY
DOCUMENTS

(71) Applicant: Smart Engines Service LLC, Moscow
(RU)

(72) Inventors: Daniil Pavlovich Matalov, Moscow
(RU); Elena Evgenyevna Limonova,
Moscow (RU); Natalya Sergeevna
Skoryukina, Moskovskay obl. (RU);
Vladimir Viktorovich Arlazarov,
Moscow (RU)

(73) Assignee: Smart Engines Service LLC, Moscow
(RU)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 357 days.

(21) Appl. No.: 17/985,309

(22) Filed: Nov. 11, 2022

(65) Prior Publication Data

US 2023/0162519 A1 May 25, 2023

(30) Foreign Application Priority Data

Nov. 19, 2021 (RU) RU2021133778

(51) Int. Cl.
G06V 30/413 (2022.01)
G06V 10/32 (2022.01)

(Continued)

(52) U.S. Cl.
CPC G06V 30/413 (2022.01); G06V 10/32

(2022.01); G06V 10/774 (2022.01); G06V

10/87 (2022.01); G06V 30/414 (2022.01);
G06V 30/418 (2022.01)

(58) Field of Classification Search

CPC G06V 30/413; G06V 10/32; G06V 10/774;

G06V 10/87; G06V 30/414; G06V

30/418; G06V 10/764

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2016/0148074 A1 * 5/2016 Jean G06V 10/462
382/190

2019/0189278 A1 * 6/2019 Matsumoto G06N 20/00

(Continued)

FOREIGN PATENT DOCUMENTS

CN 112991174 A * 6/2021

OTHER PUBLICATIONS

Arm Neon documentation, available at developer.arm.com/architectures/

instruction-sets/simd-isas/neon/intrinsics, Jul. 2, 2021, 387 pages.

(Continued)

Primary Examiner — John Villecco

Assistant Examiner — Kyla Guan-Ping Tiao Allen

(74) Attorney, Agent, or Firm — Hayes Soloway P.C.

(57) ABSTRACT

Memory-efficient feature descriptors for localization and
classification of identity documents. In an embodiment,
patches are extracted from an input image of a document.
For each of the patches, a gradient map is constructed for a
plurality of gradient orientations, a plurality of classifiers are
applied to rectangles in the gradient map, and a feature
descriptor is generated based on the values output by the
plurality of classifiers. The feature descriptors are then
compared to templates to match the document to one of the
templates for document localization and classification.

16 Claims, 7 Drawing Sheets

US012456321B2

(12) United States Patent (10) Patent No.: US 12,456,321 B2
Matalov et al. (45) Date of Patent: Oct. 28, 2025

(51) Int. Cl.
G06V 10/70 (2022.01)
G06V 10/764 (2022.01)
G06V 10/774 (2022.01)
G06V 30/414 (2022.01)
G06V 30/418 (2022.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2019/0197693 A1 * 6/2019 Zagaynov G06V 30/412
2022/0058496 A1 * 2/2022 Rusk G06N 5/04

OTHER PUBLICATIONS

Intel Intrinsics Guide, available at software.intel.com/sites/landingpage/

IntrinsicsGuide/, Dec. 2021, 2354 pages.

MIPS SIMD documentation, available at www.mips.com/products/
architectures/ase/simd, Feb. 3, 2016, 326 pages.
Acharya et al., “A real-time implementation of sift using GPU,”
Journal of Real-Time Image Processing 14(2), 267-277 (2018).
Arlazarov et al., “MIDV-500: a dataset for identity document
analysis and recognition on mobile devices in video stream,”
Computer Optics 43(5), 818-824 (Oct. 2019), doi.org/10.18287/
2412-6179-2019-43-5-818-824.
Awal et al., “Complex document classification and localization
application on identity document images,” 14th International Asso-
ciation for Pattern Recognition (IAPR) Int’l Conference on Docu-
ment Analysis and Recognition (ICDAR), IEEE (Nov. 2017), doi.
org/10.1109/icdar.2017.77, 6 pages.
Baintas et al., “Pn-net: Conjoined triple deep network for learning
local image descriptors,” arXiv:1601.05030 (2016), 9 pages.
Bay et al., “SURF: Speeded up robust features, European Confer-
ence on Computer Vision,” pp. 404-417, Springer (2006).
Bulatov et al., “Smart IDreader: Document recognition in video
stream,” 14th IAPR ICDAR, 6:39-44 (2017), doi.org/10.1109/icdar.
2017.347.
Bulatov et al., “MIDV-2019: Challenges of the modern mobile-
based document OCR,” 12th Int’l Conference on Machine Vision
(ICMV), 2019, Int’l Society for Optics and Photonics (SPIE) (Jan.
2020), doi.org/10.1117/12.2558438, 7 pages.
Calonder et al., “BRIEF: Binary robust independent elementary
features,” European Conference on Computer Vision, pp. 778-792,
Springer (2010).
Dang et al., “A comparison of local features for camera-based
document image retrieval and spotting,” Int’l Journal on Document
Analysis and Recognition (IJDAR), 22 (Sep. 2019), doi.org/10.
1007/s10032-019-00329-w, 17 pages.
Dang et al., “SSKRIF: Scale and rotation invariant features based on
spatial space of keypoints for camera-based information spotting,”
Int’l Conference on Content-Based Multimedia Indexing (CBMI),
pp. 1-6 (2018), doi.org/10.1109/cbmi.2018.8516532.
Dang et al., “SRIF: Scale and rotation invariant features for camera-
based document image retrieval,” 13th ICDAR, pp. 601-605 (2015),
doi.org/10.1109/icdar.2015.7333832.
Das et al., “Document image classification with intra-domain trans-
fer learning and stacked generalization of deep convolutional neural
networks,” 24th Int’l Conference on Pattern Recognition (ICPR),
pp. 3180-3185, IEEE (2018).
Fan et al., “Receptive fields selection for binary feature descrip-
tion,” IEEE Transactions on Image Processing 23(6):2583-2595
(2014), doi.org/10.1109/tip.2014.2317981.
Goode, “Digital identity: solving the problem of trust,” Biometric
Technology Today, 2019(10):5-8 (2019), doi.org/10.1016/S0969-
4765(19)30142-0.
Han et al., “Matchnet: Unifying feature and metric learning for
patch-based matching,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3279-3286 (2015).
Harley et al., “Evaluation of deep convolutional nets for document
image classification and retrieval,” 13th ICDAR, IEEE (Aug. 2015),
doi.org/10.1109/icdar.2015.7333910, 5 pages.

Jaderberg et al., “Reading text in the wild with convolutional neural

networks,” Int’ Journal of Computer Vision 116(1):1-20 (2016).

Kumar et al., “Learning local image descriptors with deep Siamese

and triple convolutional networks by minimising global loss func-

tions,” Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (Jun. 2016), 10 pages.

Leutenegger et al., “Binary robust invariant scalable keypoints,”

Int’l Conference on Computer Vision, pp. 2548-2555, IEEE (2011).

Lowe, “Object recognition from local scale-invariant features,”

Proceedings of the 7th IEEE Int’l Conference on Computer Vision,

vol. 2, pp. 1150-1157 (1999), doi.org/10.1109/iccv.1999.790410.

Lukoyanov et al., “Modification of YAPE keypoint detection algo-

rithm for wide local contrast range images,” 10th Int’l Conference

on Machine Vision (ICMV), vol. 10696, pp. 305-312, SPIE (2018),

doi.org/10.1117/12.2310243.

Puybareau et al., “Real-time document detection in smartphone

videos,” 25th IEEE Int’l Conference on Image Processing (ICIP),

pp. 1498-1502, IEEE (2018).

Rublee et al., “An efficient alternative to SIFT or SURF,” Int’l

Conference on Computer Vision, pp. 2564-2571, IEEE (2011).

Schapire et al., “Improved boosting algorithms using confidence-

rated predictions,” Machine Learning 37(3):297-336 (1999).

Simo-Serra et al., “Discriminative learning of deep convolutional

feature point descriptors,” Proceedings of the IEEE Int’l Conference

on Computer Vision, pp. 118-126 (2015).

Skoryukina et al., “Fast method of ID documents location and type

identification for mobile and server application,” ICDAR, IEEE

(Sep. 2019), doi.org/10.1109/icdar.2019.00141, 8 pages.

Skoryukina et al., “Memory consumption reduction for identity

document classification with local and global features combina-

tion,” 13th Int’l Conference on Machine Vision, vol. 11605, p.

116051G, SPIE (2021), doi.org.10/1117/12.2587033, 8 pages.

Skoryukina et al., “Impact of geometrical restrictions in RANSAC

sampling on the ID document classification,” 12th ICMV, vol.

11433, p. 1143306, SPIE (2020), doi.org/10.1117/12.2559306, 7

pages.

Šabanovič et al., “Deep neural network-based feature descriptor for

retinal image registration,” IEEE 6th Workshop on Advances in

Information, Electronic and Electrical Engineering (AIEEE), pp.

1-4, IEEE (2018), doi.org/10.1109/AIEEE.2018.8592033.

Suárez et al., “BEBLID: Boosted efficient binary local image

descriptor,” Pattern Recognition Letters 133, pp. 366-372 (May

2020), doi.org/10.1016/j.patrec.2020.04.005.

Tareen et al., “A comparative analysis of SIFT, SURF, KAZE,

AKAZE, ORB, and BRISK,” Int’l Conference on Computing,

Mathematics and Engineering Technologies (iCoMET), pp. 1-10,

IEEE (2018).

Tian et al., “L2-net: Deep learning of discriminative patch descrip-

tor in Euclidean space,” Proceedings of the IEEE CVPR (Jul. 2017),

9 pages.

Tong et al., “MA-CRNN: a multi-scale attention CRNN for Chinese

text line recognition in natural scenes,” IJDAR 23(2):103-114 (Nov.

2019), doi.org/10.1007/s10032-019-00348-7.
Tropin et al., “Improved algorithm of ID card detection by a priori
knowledge of the document aspect ratio,” 13th ICMV, SPIE (Jan.
2021), doi.org/10.1117/12.2587029, 10 pages.
Trzcinski et al., “Learning image descriptors with boosting,” IEEE
Transactions on Pattern Analysis and Machine Intelligence 37(3):597-
610 (Mar. 2015), doi.org/10.1109/tpami.2014.2343961.
Viola et al., “Rapid object detection using a boosted cascade of
simple features,” Proceedings of the 2001 IEEE Computer Society
Conference on CVPR, vol. 1, pp. I-I, IEEE (2001), 12 pages.
Winder et al., “Learning local image descriptors,” IEEE Conference
on CVPR, IEEE (Jun. 2007), doi.org/10.1109/cvpr.2007.382971, 8
pages.
Zhu et al., “Coarse-to-fine document localization in natural scene
image with regional attention and recursive corner refinement,”
IJDAR 22(3):351-360 (2019).

* cited by examiner

US 12,456,321 B2
Page 2

U.S. Patent Oct. 28, 2025 Sheet 1 of 7 US 12,456,321 B2

U.S. Patent Oct. 28, 2025 Sheet 2 of 7 US 12,456,321 B2

U.S. Patent Oct. 28, 2025 Sheet 3 of 7 US 12,456,321 B2

U.S. Patent Oct. 28, 2025 Sheet 4 of 7 US 12,456,321 B2

U.S. Patent Oct. 28, 2025 Sheet 5 of 7 US 12,456,321 B2

U.S. Patent Oct. 28, 2025 Sheet 6 of 7 US 12,456,321 B2

U.S. Patent Oct. 28, 2025 Sheet 7 of 7 US 12,456,321 B2

MEMORY-EFFICIENT FEATURE

DESCRIPTORS FOR LOCALIZATION AND

CLASSIFICATION OF IDENTITY

DOCUMENTS

CROSS-REFERENCE TO RELATED

APPLICATIONS

This application claims priority to Russian Patent App.
No. 2021133778, filed on Nov. 19, 2021, which is hereby
incorporated herein by reference as if set forth in full.

BACKGROUND

Field of the Invention

The embodiments described herein are generally directed
to document recognition, and, more particularly, to memory-
efficient feature descriptors for localization and classifica-
tion of identity documents.

Description of the Related Art

Systems for recognizing identity documents are already
deeply integrated into human activity, even as the pace of
integration accelerates. See, e.g., Ref17. Almost every per-
son encounters document recognition algorithms, whether it
be in banking, the sharing economy, border crossing, hos-
pitality, medicine, insurance, or any other area that requires
authentication using an identity document.

The first fundamental problems in document recognition
are document localization and classification. See, e.g., Ref9.
Document localization usually comprises finding a docu-
ment quadrangle in the document image whose vertices
represent the document’s corners and whose edges represent
the document’s borders. Document classification refers to
the assignment of a document image to one of a plurality of
categories based on the document’s content. The misclassi-
fication of a document can be fatal for the whole document
recognition process.

There are several document localization approaches that
extract and analyze document boundaries, lines, segments,
and corners. See, e.g., Ref37, Ref41, and Ref25. These
approaches test a set of hypotheses about the consistency of
the extracted geometric primitives with the distortion model
of the document rectangle.

There are also some modern approaches that use deep
learning for document classification and retrieval. See, e.g.,
Ref19 and Ref15. However, training high-accuracy algo-
rithms requires tens of thousands of training samples, which
can be difficult to obtain due to regulatory and privacy
constraints. In addition, such algorithms contain millions of
parameters that significantly affect computational time, as
well as memory consumption of random access memory
(RAM) and persistent storage.

SUMMARY

Accordingly, systems, methods, and non-transitory com-
puter-readable media are disclosed for a fast algorithm for
constructing a memory-efficient, highly discriminative local
keypoint or feature descriptor for the localization and clas-
sification of identity documents.

In an embodiment, a method comprises using at least one
hardware processor to: extract a plurality of patches com-
prising keypoints in an input image of a document; for each
of the plurality of patches, construct a gradient map for a

plurality of gradient orientations within the patch, apply a
plurality of classifiers to a plurality of rectangles in the
gradient map, wherein each of the plurality of classifiers
outputs a value, and generate a feature descriptor based on
the values output by the plurality of classifiers; and compare
the generated feature descriptors to each of a plurality of
templates to match the document to one of the plurality of
templates for document localization and classification. The
plurality of classifiers may be binary classifiers that each
output a binary value. Constructing the gradient map may
comprise computing gradient magnitudes using an L1 norm.
Each of the plurality of classifiers may be applied to a
different one of the plurality of rectangles.

The method may further comprise using the at least one
hardware processor to select the plurality of classifiers from
a plurality of available classifiers so as not to exceed a
maximum threshold number of classifiers. Selecting the
plurality of classifiers from the plurality of available clas-
sifiers so as not to exceed the maximum threshold number of
classifiers may comprise: computing an accuracy for each of
the plurality of available classifiers; sorting the plurality of
available classifiers in order of computed accuracies; adding
one of the plurality of available classifiers having a highest
computed accuracy to an output set; and adding one or more
additional ones of the plurality of available classifiers to the
output set, based on an evaluation of a correlation to one or
more classifiers already in the output set, until either the
output set contains the maximum threshold number of
classifiers or all of the plurality of available classifiers have
been evaluated.

Adding one or more additional ones of the plurality of
available classifiers to the output set may comprise, while
the output set contains less than the maximum threshold
number of classifiers, for each of the plurality of available
classifiers: determining whether or not the available classi-
fier is correlated to the one or more classifiers already in the
output set; when the available classifier is correlated to the
one or more classifiers already in the output set, excluding
the available classifier from the output set; and, when the
available classifier is not correlated to the one or more
classifiers already in the output set, adding the available
classifier to the output set. Determining whether or not the
available classifier is correlated to the one or more classifiers
already in the output set may comprise: for each of the of one
or more classifiers already in the output set, comparing an
output of the available classifier to an output of the classifier
already in the output set to determine whether or not the
available classifier is correlated to the classifier already in
the output set; when the available classifier is determined to
correlate to at least one of the one or more classifiers already
in the output set, determine that the available classifier is
correlated to the one or more classifiers already in the output
set; and, when the available classifier is determined to
correlate to none of the one or more classifiers already in the
output set, determine that the available classifier is not
correlated to the one or more classifiers already in the output
set.

Comparing an output of the available classifier to an
output of the classifier already in the output set may com-
prise: for each of a plurality of pairs of image patches, for
a first patch in the pair of image patches, determine whether
a classification that is output by the available classifier
matches a classification that is output by the classifier
already in the output set, when the classifications match,
increment a match counter, and when the classifications do
not match, increment a no-match counter, and, for a second
patch in the pair of image patches, determine whether a

US 12,456,321 B2

1 2

5

10

15

20

25

30

35

40

45

50

55

60

65

classification that is output by the available classifier
matches a classification that is output by the classifier
already in the output set, when the classifications match,
increment the match counter, and when the classifications do
not match, increment the no-match counter; compute a
correlation value, between the available classifier and the
classifier already in the output set, based on a value of the
match counter and a value of the no-match counter; when the
correlation value satisfies a threshold, determining that the
available classifier is correlated to the classifier already in
the output set; and, when the correlation value does not
satisfy the threshold, determining that the available classifier
is not correlated to the classifier already in the output set.
The correlation value may be calculated based on a ratio of
a difference, between the value of the match counter and the
value of the no-match counter, and a total number of the
plurality of pairs of image patches, wherein the correlation
value satisfies the threshold when it is greater than the
threshold and does not satisfy the threshold when it is less
than the threshold. The plurality of pairs of image patches
may comprise pairs of matching image patches and pairs of
non-matching image patches.

The method may further comprise using the at least one
hardware processor to extract the plurality of pairs of image
patches from a dataset comprising a plurality of document
images by, for each of one or more of the plurality of
document images: identifying a first quadrangle represent-
ing document borders in the document image in an input
basis; identifying a second quadrangle representing docu-
ment borders in the document image in a normalized basis;
identifying a set of rectangles in the document image
according to the normalized basis; computing a transforma-
tion matrix between the first quadrangle and the second
quadrangle; computing a scaling value as a ratio of an area
of the first quadrangle to an area of the second quadrangle;
computing a normalized document image by applying the
transformation matrix to the document image; executing a
keypoints detection algorithm on the normalized document
image to obtain a set of keypoints; removing any keypoints,
from the set of keypoints, that are not within at least one
rectangle in the set of rectangles; for each keypoint remain-
ing in the set of keypoints, computing a corresponding
keypoint in the document image in the input basis, based on
the scaling value and an inverse of the transformation
matrix, extracting a first image patch for the keypoint from
the normalized document image, extracting a second image
patch for the corresponding keypoint from the document
image in the input basis, and adding the first image patch and
the second image patch as a matching pair of image patches
to an output set; and output the output set as the plurality of
pairs of image patches. The method may further comprise
using the at least one hardware processor to randomly select
the one or more document images from the plurality of
document images in the dataset.

The method may further comprise using the at least one
hardware processor to: extract a plurality of pairs of image
patches from a dataset comprising a plurality of document
images by, for each of one or more of the plurality of
document images, identifying a first quadrangle representing
document borders in the document image in an input basis,
identifying a second quadrangle representing document bor-
ders in the document image in a normalized basis, identi-
fying a set of rectangles in the document image according to
the normalized basis, computing a transformation matrix
between the first quadrangle and the second quadrangle,
computing a scaling value as a ratio of an area of the first
quadrangle to an area of the second quadrangle, computing

a normalized document image by applying the transforma-

tion matrix to the document image, executing a keypoints

detection algorithm on the normalized document image to

obtain a set of keypoints, removing any keypoints, from the

set of keypoints, that are not within at least one rectangle in
the set of rectangles, for each keypoint remaining in the set
of keypoints, computing a corresponding keypoint in the
document image in the input basis, based on the scaling
value and an inverse of the transformation matrix, extracting
a first image patch for the keypoint from the normalized
document image, extracting a second image patch for the
corresponding keypoint from the document image in the
input basis, and adding the first image patch and the second
image patch as a matching pair of image patches to an output
set, and outputting the output set as the plurality of pairs of
image patches; and train the plurality of classifiers using the
extracted plurality of pairs of image patches.

The method may further comprise using the at least one
hardware processor to: prior to extracting the plurality of
patches, receive the input image, and identify the keypoints
in the input image; and, after comparing the generated
feature descriptors to each of the plurality of templates,
when the document is matched to one of the plurality of
templates, localize and classify the document based on the
matching template, and, when the document is not matched
to any of the plurality of templates, reject the input image.
The at least one hardware processor may be comprised in a
mobile device, wherein the input image is captured by a
camera of the mobile device.

Any of the methods may be embodied in executable
software modules of a processor-based system, such as a
server, and/or in executable instructions stored in a non-
transitory computer-readable medium.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present invention, both as to its structure
and operation, may be gleaned in part by study of the
accompanying drawings, in which like reference numerals
refer to like parts, and in which:

FIG. 1 illustrates an example processing system, by which
one or more of the processes described herein, may be
executed, according to an embodiment;

FIG. 2 illustrates an example template-matching process,
according to an embodiment;

FIG. 3 illustrates the computation of feature descriptors,
according to an embodiment;

FIG. 4 illustrates an implementation of the computation of
feature descriptors, according to an embodiment;

FIG. 5 illustrates an example feature-selection algorithm,
according to an embodiment;

FIG. 6 illustrates examples of positive and negative pairs
of image patches, according to an embodiment; and

FIG. 7 illustrates the performance of an example imple-
mentation of the disclosed binary feature descriptor, relative
to state-of-the-art binary feature descriptors, according to an
embodiment.

DETAILED DESCRIPTION

In an embodiment, systems, methods, and non-transitory
computer-readable media are disclosed for memory-efficient
feature descriptors for localization and classification of
identity documents. After reading this description, it will
become apparent to one skilled in the art how to implement
the invention in various alternative embodiments and alter-
native applications. However, although various embodi-

US 12,456,321 B2

3 4

5

10

15

20

25

30

35

40

45

50

55

60

65

ments of the present invention will be described herein, it is

understood that these embodiments are presented by way of

example and illustration only, and not limitation. As such,
this detailed description of various embodiments should not
be construed to limit the scope or breadth of the present
invention as set forth in the appended claims.

1. SYSTEM OVERVIEW

FIG. 1 is a block diagram illustrating an example wired or
wireless system 100 that may be used in connection with
various embodiments described herein. For example, system
100 may be used as or in conjunction with one or more of
the functions, processes, or methods (e.g., to store and/or
execute one or more software modules implementing the
disclosed algorithms) described herein. System 100 can be
a server or any conventional personal computer, or any other
processor-enabled device that is capable of wired or wireless
data communication. In a particular embodiment, system
100 is contemplated to be a mobile device, such as a
smartphone. However, other computer systems and/or archi-
tectures may be also used, as will be clear to those skilled in
the art.

System 100 preferably includes one or more processors
110. Processor(s) 110 may comprise a central processing
unit (CPU). Additional processors may be provided, such as
a graphics processing unit (GPU), an auxiliary processor to
manage input/output, an auxiliary processor to perform
floating-point mathematical operations, a special-purpose
microprocessor having an architecture suitable for fast
execution of signal-processing algorithms (e.g., digital-sig-
nal processor), a slave processor subordinate to the main
processing system (e.g., back-end processor), an additional
microprocessor or controller for dual or multiple processor
systems, and/or a coprocessor. Such auxiliary processors
may be discrete processors or may be integrated with
processor 110. Examples of processors which may be used
with system 100 include, without limitation, the Pentium®
processor, Core i7® processor, and Xeon® processor, all of
which are available from Intel Corporation of Santa Clara,
California, any of the processors (e.g., A series) available
from Apple Inc. of Cupertino, any of the processors (e.g.,
Exynos™) available from Samsung Electronics Co., Ltd., of
Seoul, South Korea, and/or the like.

Processor 110 is preferably connected to a communication
bus 105. Communication bus 105 may include a data
channel for facilitating information transfer between storage
and other peripheral components of system 100. Further-
more, communication bus 105 may provide a set of signals
used for communication with processor 110, including a
data bus, address bus, and/or control bus (not shown).
Communication bus 105 may comprise any standard or
non-standard bus architecture such as, for example, bus
architectures compliant with industry standard architecture
(ISA), extended industry standard architecture (EISA),
Micro Channel Architecture (MCA), peripheral component
interconnect (PCI) local bus, standards promulgated by the
Institute of Electrical and Electronics Engineers (IEEE)
including IEEE 488 general-purpose interface bus (GPM),
IEEE 696/S-100, and/or the like.

System 100 preferably includes a main memory 115 and
may also include a secondary memory 120. Main memory
115 provides storage of instructions and data for programs
executing on processor 110, such as one or more of the
functions and/or modules discussed herein. It should be
understood that programs stored in the memory and
executed by processor 110 may be written and/or compiled

according to any suitable language, including without limi-
tation C/C++, Java, JavaScript, Perl, Visual Basic, .NET, and
the like. Main memory 115 is typically semiconductor-based
memory such as dynamic random access memory (DRAM)
and/or static random access memory (SRAM). Other semi-
conductor-based memory types include, for example, syn-
chronous dynamic random access memory (SDRAM), Ram-
bus dynamic random access memory (RDRAM),
ferroelectric random access memory (FRAM), and the like,
including read only memory (ROM).

Secondary memory 120 may optionally include an inter-
nal medium 125 and/or a removable medium 130. Remov-
able medium 130 is read from and/or written to in any
well-known manner. Removable storage medium 130 may
be, for example, a magnetic tape drive, a compact disc (CD)
drive, a digital versatile disc (DVD) drive, other optical
drive, a flash memory drive, and/or the like.

Secondary memory 120 is a non-transitory computer-
readable medium having computer-executable code (e.g.,
disclosed software modules) and/or other data stored
thereon. The computer software or data stored on secondary
memory 120 is read into main memory 115 for execution by
processor 110.

In alternative embodiments, secondary memory 120 may
include other similar means for allowing computer programs
or other data or instructions to be loaded into system 100.
Such means may include, for example, a communication
interface 140, which allows software and data to be trans-
ferred from external storage medium 145 to system 100.
Examples of external storage medium 145 may include an
external hard disk drive, an external optical drive, an exter-
nal magneto-optical drive, and/or the like. Other examples
of secondary memory 120 may include semiconductor-
based memory, such as programmable read-only memory
(PROM), erasable programmable read-only memory
(EPROM), electrically erasable read-only memory (EE-
PROM), and flash memory (block-oriented memory similar
to EEPROM).

As mentioned above, system 100 may include a commu-
nication interface 140. Communication interface 140 allows
software and data to be transferred between system 100 and
external devices (e.g. printers), networks, or other informa-
tion sources. For example, computer software or data may
be transferred to system 100, over one or more networks
(e.g., including the Internet), from a network server via
communication interface 140. Examples of communication
interface 140 include a built-in network adapter, network
interface card (NIC), Personal Computer Memory Card
International Association (PCMCIA) network card, card bus
network adapter, wireless network adapter, Universal Serial
Bus (USB) network adapter, modem, a wireless data card, a
communications port, an infrared interface, an IEEE 1394
fire-wire, and any other device capable of interfacing system
100 with a network or another computing device. Commu-
nication interface 140 preferably implements industry-pro-
mulgated protocol standards, such as Ethernet IEEE 802
standards, Fiber Channel, digital subscriber line (DSL),
asynchronous digital subscriber line (ADSL), frame relay,
asynchronous transfer mode (ATM), integrated digital ser-
vices network (ISDN), personal communications services
(PCS), transmission control protocol/Internet protocol
(TCP/IP), serial line Internet protocol/point to point protocol
(SLIP/PPP), and so on, but may also implement customized
or non-standard interface protocols as well.

Software and data transferred via communication inter-
face 140 are generally in the form of electrical communi-
cation signals 155. These signals 155 may be provided to

US 12,456,321 B2

5 6

5

10

15

20

25

30

35

40

45

50

55

60

65

communication interface 140 via a communication channel
150. In an embodiment, communication channel 150 may be
a wired or wireless network, or any variety of other com-
munication links. Communication channel 150 carries sig-
nals 155 and can be implemented using a variety of wired or
wireless communication means including wire or cable,
fiber optics, conventional phone line, cellular phone link,
wireless data communication link, radio frequency (“RF”)
link, or infrared link, just to name a few.

Computer-executable code (e.g., computer programs,
comprising one or more software modules) is stored in main
memory 115 and/or secondary memory 120. Computer-
executable code can also be received via communication
interface 140 and stored in main memory 115 and/or sec-
ondary memory 120. Such computer-executable code, when
executed, enable system 100 to perform the various func-
tions of the disclosed embodiments as described elsewhere
herein.

In this description, the term “computer-readable medium”
is used to refer to any non-transitory computer-readable
storage media used to provide computer-executable code
and/or other data to or within system 100. Examples of such
media include main memory 115, secondary memory 120
(including internal memory 125, removable medium 130,
and external storage medium 145), and any peripheral
device communicatively coupled with communication inter-
face 140 (including a network information server or other
network device). These non-transitory computer-readable
media are means for providing executable code, program-
ming instructions, software, and/or other data to system 100.

In an embodiment that is implemented using software, the
software may be stored on a computer-readable medium and
loaded into system 100 by way of removable medium 130,
I/O interface 135, or communication interface 140. In such
an embodiment, the software is loaded into system 100 in
the form of electrical communication signals 155. The
software, when executed by processor 110, preferably
causes processor 110 to perform one or more of the pro-
cesses and functions described elsewhere herein.

In an embodiment, I/O interface 135 provides an interface
between one or more components of system 100 and one or
more input and/or output devices. Example input devices
include, without limitation, sensors, keyboards, touch
screens or other touch-sensitive devices, cameras, biometric
sensing devices, computer mice, trackballs, pen-based point-
ing devices, and/or the like. Examples of output devices
include, without limitation, other processing devices, cath-
ode ray tubes (CRTs), plasma displays, light-emitting diode
(LED) displays, liquid crystal displays (LCDs), printers,
vacuum fluorescent displays (VFDs), surface-conduction
electron-emitter displays (SEDs), field emission displays
(FEDs), and/or the like. In some cases, an input and output
device may be combined, such as in the case of a touch panel
display (e.g., in a smartphone, tablet, or other mobile
device).

System 100 may also include optional wireless commu-
nication components that facilitate wireless communication
over a voice network and/or a data network. The wireless
communication components comprise an antenna system
170, a radio system 165, and a baseband system 160. In
system 100, radio frequency (RF) signals are transmitted
and received over the air by antenna system 170 under the
management of radio system 165.

In an embodiment, antenna system 170 may comprise one
or more antennae and one or more multiplexors (not shown)
that perform a switching function to provide antenna system
170 with transmit and receive signal paths. In the receive

path, received RF signals can be coupled from a multiplexor

to a low noise amplifier (not shown) that amplifies the

received RF signal and sends the amplified signal to radio
system 165.

In an alternative embodiment, radio system 165 may
comprise one or more radios that are configured to commu-
nicate over various frequencies. In an embodiment, radio
system 165 may combine a demodulator (not shown) and
modulator (not shown) in one integrated circuit (IC). The
demodulator and modulator can also be separate compo-
nents. In the incoming path, the demodulator strips away the
RF carrier signal leaving a baseband receive audio signal,
which is sent from radio system 165 to baseband system
160.

If the received signal contains audio information, then
baseband system 160 decodes the signal and converts it to an
analog signal. Then the signal is amplified and sent to a
speaker. Baseband system 160 also receives analog audio
signals from a microphone. These analog audio signals are
converted to digital signals and encoded by baseband system
160. Baseband system 160 also encodes the digital signals
for transmission and generates a baseband transmit audio
signal that is routed to the modulator portion of radio system
165. The modulator mixes the baseband transmit audio
signal with an RF carrier signal, generating an RF transmit
signal that is routed to antenna system 170 and may pass
through a power amplifier (not shown). The power amplifier
amplifies the RF transmit signal and routes it to antenna
system 170, where the signal is switched to the antenna port
for transmission.

Baseband system 160 is also communicatively coupled
with processor(s) 110. Processor(s) 110 may have access to
data storage areas 115 and 120. Processor(s) 110 are pref-
erably configured to execute instructions (i.e., computer
programs, such as the disclosed algorithms or software
modules) that can be stored in main memory 115 or sec-
ondary memory 120. Computer programs can also be
received from baseband processor 160 and stored in main
memory 110 or in secondary memory 120, or executed upon
receipt. Such computer programs, when executed, enable
system 100 to perform the various functions of the disclosed
embodiments.

2. PROCESS OVERVIEW

Embodiments of processes for memory-efficient feature
descriptors for localization and classification of identity
documents will now be described in detail. It should be
understood that the described processes may be embodied in
one or more software modules that are executed by one or
more hardware processors (e.g., processor 110), for
example, as a computer program or software package. The
described processes may be implemented as instructions
represented in source code, object code, and/or machine
code. These instructions may be executed directly by hard-
ware processor(s) 110, or alternatively, may be executed by
a virtual machine operating between the object code and
hardware processors 110.

Alternatively, the described processes may be imple-
mented as a hardware component (e.g., general-purpose
processor, integrated circuit (IC), application-specific inte-
grated circuit (ASIC), digital signal processor (DSP), field-
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, etc.), combi-
nation of hardware components, or combination of hardware
and software components. To clearly illustrate the inter-
changeability of hardware and software, various illustrative

US 12,456,321 B2

7 8

5

10

15

20

25

30

35

40

45

50

55

60

65

components, blocks, modules, circuits, and steps are
described herein generally in terms of their functionality.
Whether such functionality is implemented as hardware or
software depends upon the particular application and design
constraints imposed on the overall system. Skilled persons
can implement the described functionality in varying ways
for each particular application, but such implementation
decisions should not be interpreted as causing a departure
from the scope of the invention. In addition, the grouping of
functions within a component, block, module, circuit, or step
is for ease of description. Specific functions or steps can be
moved from one component, block, module, circuit, or step
to another without departing from the invention.

Furthermore, while the processes, described herein, are
illustrated with a certain arrangement and ordering of sub-
processes, each process may be implemented with fewer,
more, or different subprocesses and a different arrangement
and/or ordering of subprocesses. In addition, it should be
understood that any subprocess, which does not depend on
the completion of another subprocess, may be executed
before, after, or in parallel with that other independent
subprocess, even if the subprocesses are described or illus-
trated in a particular order.
2.1. Template Matching

Specific knowledge about the type of document being
recognized enables optimal parameters to be defined for
document image processing, to therefore, achieve a high
recognition accuracy. This may also decrease the size of the
input data for character recognition algorithms, to thereby
reduce the required amount of computing resources. For
example, modern text-in-the-wild recognition algorithms,
which are supposed to recognize all text characters regard-
less of their font size and semantics, require high-end
computational performance. See, e.g., Ref36 and Ref20.

Identity documents often have a fixed geometry and a set
of predefined elements, such as static text, logos, and fixed
backgrounds. Visual-based approaches are generally the best
suited for identity document recognition. See, e.g., Ref6.
This is demonstrated by experimental results from a frame-
work for identity document localization and classification
that is based on template matching.

FIG. 2 illustrates an example template-matching process
200, according to an embodiment. In subprocess 210, an
input image is received. The input image may be a photo-
graph or video frame of a document, that has been captured,
for example, using the camera of a mobile device, such as a
smartphone, and which may have been pre-processed (e.g.,
cropped, normalized, etc.). In subprocess 220, keypoints are
extracted from the input image. In subprocess 230, feature
descriptors are computed from the extracted keypoints. In
subprocess 240, the computed feature descriptors are com-
pared to the feature descriptors of a plurality of templates,
which models a plurality of document types, in a database
242, to identify a matching template. In subprocess 250, if
a valid match is found (i.e., “Yes” in subprocess 250), the
matching template and the document quadrangle are iden-
tified in subprocess 260. Otherwise, if no valid match is
found (i.e., “No” in subprocess 250), the input image is
rejected in subprocess 270.

Template-matching process 200 has the following prop-
erties:

Robustness to the conditions under which the input image
is captured, depending on the robustness of the algo-
rithms used for subprocesses 220 and 230.

Does not need a large training dataset. The template that
models a specific document type may be built from a
single exemplar of the document type.

Exploits a model of projecting a two-dimensional plane of
the three-dimensional world onto a two-dimensional
plane of the input image, which leads to high-precision
document localization.

Extensible to a large number of different document types.
Each algorithm of each subprocess (e.g., 220, 230, and

240) is modular, such that it may be replaced or
improved, independently of the other subprocesses. For
example, each of the keypoint-extraction algorithm,
feature-descriptor-computation algorithm, and match-
ing algorithm may be replaced or improved indepen-
dently of each other.

Extensible and flexible design. For example, several
papers propose the utilization of lines and various
rejection rules for hypotheses provided by random
sample consensus (RANSAC). See Ref29 and Ref31.

Importantly, template-matching process 200 has demon-
strated industrial precision and performance on a widespread
class of devices, such as smartphones. See Ref9 and Ref29.
However, with the development of industrial systems, the
number of document types that must be supported increases,
along with the number of indexed templates that must be
constructed for all of the document types. This affects the
memory consumption and speed of template-matching pro-
cess 200. Ref31 demonstrates that utilization of the Bin-
Boost descriptors (see Ref38), instead of Speeded-Up
Robust Features (SURF) (see Ref8), provides a reduction in
memory consumption with no noticeable changes in classi-
fication accuracy.
2.2. Introduction to Descriptor Computation

Scale-Invariant Feature Transform (SIFT) (see Ref23) is
the most well-known and well-studied algorithm for detect-
ing and computing feature descriptors (e.g., in subprocess
230). SIFT was inspired by the properties of neurons from
the inferior temporal cortex, which are responsible for
arbitrary object recognition in primate vision. SIFT uses
handcrafted gradient-based features. According to Ref12,
the SIFT descriptors are still among the most widely used
description algorithms, producing the best accuracy for text
document matching.

However, the SIFT description of a single keypoint is a
128-dimensional vector of real values. In the case of 32-bit
floating point values, SIFT requires 4096 bits of memory to
describe a single local feature. In addition, the SIFT algo-
rithm requires significant computational resources and spe-
cial GPU implementations to ensure real-time performance.
See Ref4.

A number of universal descriptors, such as SURF (see
Ref8), have been proposed to address the problems of
intense calculations and dimensionality posed by SIFT. To
increase the computational speed and to reduce memory
consumption, binary descriptors have been proposed. These
binary descriptors include, for example, Binary Robust
Independent Elementary Features (BRIEF) (see Ref11),
Binary Robust Invariant Scalable Keypoints (BRISK) (see
Ref22), Oriented FAST and Rotated BRIEF (ORB) (see
Ref26), and Receptive Field Descriptor (RFD) (see Ref16).
Binary descriptors can be compared using the Hamming
distance, which can be calculated with efficient hardware
instructions and efficient memory usage. The main problem
with binary descriptors is that they result in significantly
lower accuracy than descriptors that comprise real values.
See Ref34 and Ref30.

A number of local keypoints description algorithms, using
supervised learning, have been proposed. Descriptors such
as BinBoost (see Ref38) and Boosted Efficient Binary Local
Image Descriptor (BEBLID) (see Ref33) modify the Ada-

US 12,456,321 B2

9 10

5

10

15

20

25

30

35

40

45

50

55

60

65

Boost algorithm (see Ref27) to train compact image repre-

sentations. Deep learning has also been used to train descrip-

tors. Some of these deep-learning models use the classical

approach with L2 loss minimization (see Ref28, Ref35, and

Ref32), while most modern approaches train Siamese net-

works (see Ref21 and Ref28) using triplet loss optimization

(see Ref7 and Ref21).

Special document-oriented descriptors have also been

proposed. Ref14 introduces a descriptor that is based on the

usage of geometrical constraints between pairs of nearest

points around a keypoint. This descriptor directly addresses

the problem of robustness of the keypoint neighborhood

description under projective and affine distortions. However,

the algorithm considers centroids of each word-connected

component as a keypoint. This requires an algorithm for

connected component extraction that has high quality and

robustness to local lighting. Further modifications of the

Scale and Rotation Invariant Features (SRIF) method (see

Ref14) resulted in a Spatial Space of Keypoints SRIF

(SSKSRIF) descriptor (see Ref13), which supports the same

classical local keypoints as SURF, SIFT, and the like.

However, Ref13 acknowledges that the stability of the

keypoints extraction (e.g., subprocess 220) directly affects

the algorithm’s performance in computing feature descrip-

tors (e.g., subprocess 230).

2.3. Computation of Feature Descriptors

FIG. 3 illustrates the computation of feature descriptors in

subprocess 230, according to an embodiment. In subprocess

310, a plurality of patches are extracted from the input

image. For example, the plurality of patches may be

extracted based on the keypoints extracted in subprocess

220. It should be understood that subsequent subprocesses

320-340 iterate over all of the patches extracted in subpro-

cess 310, either in parallel with subprocess 310 (e.g., as the

patches are extracted) or serially (e.g., after all of the patches

have been extracted).

In subprocess 320, if at least one patch remains to be

processed (i.e., “Yes” in subprocess 320), subprocess 330 is

performed. In subprocess 330, the feature space is con-

structed. For example, the input patch P may be mapped to

a plurality of images (e.g., eight images) that are each
produced with a bilinear soft assignment of an image
gradient orientation. Each gradient orientation represents a
sector of a unit circle, and each of the plurality of images is
a weighted image gradient norm in a respective sector. The
gradient magnitude GM may be computed for each of the
gradient orientations to form a gradient map. In particular,
for each point in the input image, a direction of the gradient
and a magnitude (absolute value) of the gradient at this point
are calculated. The magnitude of the gradient is distributed
between the two closest sectors of the unit circle, and
therefore, added to the corresponding point of the corre-
sponding gradient maps for those two closest sectors. The
distribution of the magnitude of the gradient is dependent on
the closeness of the gradient direction to the sectors. If the
gradient direction points directly to the center of the sector,
the magnitude of the gradient is added to only one gradient
map. If the gradient direction coincides with the boundary
between two sectors, the magnitude of the gradient is
distributed evenly between the two sectors. In all other
cases, the distribution of the magnitude of the gradient is
weighted linearly according to the angular distance between
the gradient direction and the boundary between the two
sectors. In an embodiment, unlike in other gradient-orien-
tation-based feature descriptions, the gradient magnitude

GM may be computed using the L1 norm, to increase

robustness and the speed of computation, as well as reduce

memory consumption.

In subprocess 340, a plurality of binary classifiers h,

within a set H, are applied to the feature space comprising

the gradient map of gradient magnitudes GM to produce a

feature descriptor. Each classifier h may be defined by a

rectangular region R, an index c into the gradient map, and

a threshold t. The classifier h outputs a binary value, for

example, of either “0” (e.g., representing the absence of a

corresponding feature in rectangular region R) or “1” (e.g.,

representing the presence of a corresponding feature in

rectangular region R). The binary values that are output by

all of the binary classifiers h in set H are combined into a

feature descriptor for patch P. In particular, the feature

descriptor D for each patch P may comprise a response

vector that comprises or consists of the set of binary values

(i.e., classifications) output by the set H of binary classifiers

h. While embodiments will be described herein primarily

with respect to binary classifiers, it should be understood

that other types of classifiers, including non-binary classi-

fiers, may be used in place of binary classifiers. Thus, any

description of a process or subprocess that refers to binary

classifiers should also be understood to apply equally to

other types of classifiers.

Once no patches remain to be processed (i.e., “No” in

subprocess 320), all of the feature descriptors D that have
been constructed for the input image are output in subpro-
cess 350. The output may comprise a plurality of feature
descriptors D, comprising or consisting of one feature
descriptor D for each of the plurality of patches P that were
extracted in subprocess 310.

FIG. 4 illustrates subprocess 230, according to an
example implementation. As illustrated, an input patch P is
mapped into a feature space or gradient map comprising the
gradient magnitudes GM1 through GMK for K gradient
orientations (e.g., K=8). Each of a plurality of binary clas-
sifiers h in a set H is applied to a defined rectangular region
R, at index c within the gradient map, according to a
threshold t, to produce a binary classification (e.g., “0” or
“1”). For example, classifier h1 is applied to region R1, at
index c1 within the gradient map, according to a threshold t1
to produce a binary value v1 (e.g., “0” or “1”), whereas
classifier hx is applied to region Rx, at index cx within the
gradient map, according to a threshold tx to produce a binary
value vx. All of the binary values v produced by the set H of
binary classifiers h are combined into a response vector,
representing the feature descriptor Dp for input patch P.

In an embodiment, a binary classifier h may be imple-
mented as follows:

h(P) =  1, if g(P) ≥ 1
0, otherwise

wherein

g(P) =


(x,y)
GMc(x, y)


i=0

K-1
(x,y)

GMi(x, y)

wherein Σ(x,y) sums over all points in the input patch P, and
wherein the values of the function g(P) may be efficiently
computed using the concept of integral images, as described
in Ref39.

US 12,456,321 B2

11 12

5

10

15

20

25

30

35

40

45

50

55

60

65

2.4. Training and Selection of Features
In an embodiment, the training and selection of the

features (i.e., as represented by the binary classifiers h in set
H) used in the feature descriptors D is based on the idea that
the Hamming distances between matching pairs of patches
P are significantly less than the Hamming distances between
dissimilar pairs of patches P. The feature training may be
organized into two steps: (1) a set of binary classifiers h are
independently trained to establish thresholds t that lead to
the highest accuracy (see Ref16); and (2) the most accurate
features are selected, based on the potentially excessive
correlation of the responses of binary classifiers h. In an
embodiment, the manner in which feature correlation is
calculated is different than in the algorithm for RFD feature
selection in Ref16. In addition, unlike in Ref16, the number
of selected features may be limited.

FIG. 5 illustrates an example feature-selection algorithm
500 for selecting the set H of binary classifiers h to be used
in subprocess 230, according to an embodiment. The inputs
to algorithm 500 may comprise:

a set M of labeled pairs of patches (Pi
1, Pi

2, li), wherein
li∈{ 1, −1} to indicate whether the pair of patches Pi

1

and Pi
2 is matching (i.e., li=1) or non-matching (i.e.,

li=−1);
a set H' of trained binary classifiers h' representing the

available features from which algorithm 500 is to
select;

a maximum number of features N to select; and/or
a correlation threshold tc.
The output of algorithm 500 is the set H of binary

classifiers h to be used in subprocess 230.
In subprocess 505, the accuracy qi is computed for each

binary classifier h' in H' using the set of patches M. Then, in
subprocess 510, the binary classifiers h' in H' are sorted in
descending order of their respective accuracies qj, from most
accurate to least accurate, such that h'0 represents the most
accurate of the binary classifiers h' in H'. In subprocess 515,
this first and most accurate binary classifier h'0 is added to
the output set H of binary classifiers h. In other words,
h0=h'0.

Next, algorithm 500 loops through iterations of the
remaining subprocesses, for each binary classifier h' in H',
until either the size of output set H equals the maximum
number of features N (i.e., “No” in subprocess 520) or no
more binary classifiers h' remain to be considered in H' (i.e.,
“No” in subprocess 525). If the size of output set H is less
than the maximum number of features N (i.e., “Yes” in
subprocess 520) and at least one binary classifier h' remains
to be considered in H' (i.e., “Yes” in subprocess 525),
algorithm 500 proceeds to subprocess 530 to begin compar-
ing each binary classifier h in output set H to the current
binary classifier h' under consideration from the input set H'
of available binary classifiers. Notably, due to subprocess
515, there will be at least one binary classifier h in output set
H at the first iteration of subprocess 530.

If at least one binary classifier h remains to be considered
in output set H (i.e., “Yes” in subprocess 530), algorithm 500
proceeds to subprocess 535 to begin considering each
labeled pair of patches (P1, P2) in input set M with respect
to the current pair of binary classifiers h and h' being
compared. If at least one pair of patches remain to be
considered (i.e., “Yes” in subprocess 535), algorithm 500
proceeds to subprocess 540. In subprocess 540, the classi-
fication of h'(P1) is compared to the classification of h(P'),
which may be, for example, a value of “0” or “1”. If the
classifications match (i.e., “Yes” in subprocess 540), a match
counter is incremented in subprocess 545. Otherwise, if the

classifications do not match (i.e., “No” in subprocess 540),

a no-match counter is incremented in subprocess 550. Simi-

larly, in subprocess 555, the classification of h'(P2) is com-

pared to the classification of h(P2), which may be, for

example, a value of “0” or “1”. If the classifications match

(i.e., “Yes” in subprocess 555), the match counter is incre-

mented in subprocess 560. Otherwise, if the classifications

do not match (i.e., “No” in subprocess 555), the no-match

counter is incremented in subprocess 565.

Once all pairs of patches in M have been considered (i.e.,

“No” in subprocess 535), in subprocess 570, algorithm 500

computes the correlation between the current pair of binary

classifiers h and h' being compared. The correlation value

may model the frequency of coincidence of the responses of

the pair of binary classifiers h and h' on corresponding
patches in M, normalized to a range of 0 to 1. For instance,
the correlation value may be computed based on the values
of the match counter and the no-match counter (e.g., based
on a ratio of the difference between the values of the match
and no-match counters and a size of M). As an example, the
correlation value between the j-th binary classifier h in H and
the k-th binary classifier h' in H' may be calculated as the
difference between the match counter and the no-match
counter, divided by four times the size of the input set M,
with a constant (e.g., 0.5) added to the quotient:

nm jk - nd jk

4* �M �
+ 0.5

wherein nm is the value of the match counter, nd is the value
of the no-match counter, and ?M? is the size of M.

In subprocess 575, if the current pair of binary classifiers
h and h' are not correlated (i.e., “No” in subprocess 575),
algorithm 500 selects the next binary classifier h, if any,
from output set H to compare to the current binary classifier
h' from the input set H'. Otherwise, if the current pair of
binary classifiers h and h' are correlated (i.e., “Yes” in
subprocess 575), algorithm 500 stops considering the cur-
rent binary classifier h' from the input set H', and returns to
subprocess 525 to consider the next binary classifier h', if
any, from the input set H'. Algorithm 500 may determine that
the current pair of binary classifiers h and h' is correlated if
the correlation value computed in subprocess 570 satisfied a
threshold. For example, in the case that higher correlation
values indicate higher correlation, algorithm 500 may deter-
mine that the current pair of binary classifiers h and h' are
correlated when the correlation value is greater than a
threshold value, and determine that the current pair of binary
classifiers h and h' are not correlated when the correlation
value is less than or equal to the threshold value. Alterna-
tively, in the case that lower correlation values indicate
higher correlation, algorithm 500 may determine that the
current pair of binary classifiers h and h' are correlated when
the correlation value is less than a threshold value, and
determine that the current pair of binary classifiers h and h'
are not correlated when the correlation value is greater than
or equal to the threshold value.

Once all binary classifiers h from the output set H have
been considered for a given binary classifier h' from the
input set H' (i.e., “No” in subprocess 530), algorithm 500
may add the binary classifier h' to the output set H in
subprocess 580, and return to subprocess 520. It should be
understood that, if algorithm 500 has reached the end of
output set H for a given binary classifier h', then h' has not
correlated with any binary classifiers h in output set H. This

US 12,456,321 B2

13 14

5

10

15

20

25

30

35

40

45

50

55

60

65

is because, if that binary classifier h' had correlated with any
binary classifier h in output set H, “Yes” would have been
determined in subprocess 575, which would have returned
algorithm 500 to subprocess 525 to select the next binary
classifier h' from input set H' before finishing the loop
through output set H, thereby effectively discarding the
current binary classifier h'. In other words, only binary
classifiers h' in input set H' that are not correlated with binary
classifiers h, which are already in output set H, are added to
output set H.

Algorithm 500 may also be expressed in pseudocode as
follows:

Pseudocode for Feature-Selection Algorithm 500

compute accuracy qi for each h’i in H’ on the set of patches M;

sort H’ in descending order of accuracy qi;

H ← H ∪ { h’0} ;

j ← 1;

while ?H? ≤ N and j < ?H’? do

foreach j ∈ { 1,...,?H’?} do

gj ← true;

foreach k ∈ { 1,...,?H?} do

nmjk ← 0, ndjk ← 0;

foreach m ∈ { 1,...,?M?} do

if h’j(P
1
m) = hk(P

1
m) then nmjk ← nmjk + 1;

else ndjk ← ndjk + 1;

end

if h’j(P
2
m) = hk(P

2
m) then nmjk ← nmjk + 1;

else ndjk ← ndjk + 1;

end

end

corrjk ← (nmjk − ndjk) / (4 • ?M?) + 0.5;

if corrjk ≥ tc then

gj ← false;

break;

end

end

if gj = true then

H ← H ∪ h’j;

end

end

end

3. EXPERIMENTAL RESULTS

Experiments that were conducted using the disclosed

feature descriptor will now be described in detail. However,

it should be understood that the experiments utilized a

particular implementation of the disclosed embodiments.

Other implementations may achieve the same or different

results and advantages than described herein.

3.1. Construction of Dataset

While several datasets exist for benchmarking arbitrary

patch verification problems, there are no existing datasets of

patches that have been extracted from identity documents.

Thus, to perform experiments, a dataset of patches from

identity documents was constructed using a subset of the

document types from the Mobile Identity Document Video

(MIDV)-500 (see Ref5) and MIDV-2019 (see Ref10) data-

sets. MIDV-500 contains video clips of fifty different docu-

ment types captured using smartphone cameras. The image

frames in MIDV-500 include complex backgrounds, projec-

tive distortions, highlighting, and other distortions that are

common in images captured by hand-held devices, such as

smartphones. MIDV-2019 is an extension of MIDV-500,

which includes image frames of documents captured under

extreme projective distortions, in low lighting, and in 4K

resolution. Each video clip in MIDV-500 and MIDV-2019

consist of thirty frames with corresponding ground-truths

that include coordinates of the document corners.

For experimentation, ten document types were randomly

selected from each of MIDV-500 and MIDV-2019, repre-

senting drivers licenses, passports, and other types of iden-

tity documents. For each video clip, up to seven image

frames were randomly selected. Any image frames, for

which a document corner fell out of the frame by more than
10% of the average diagonal length of the document, were
rejected. The algorithm for extracting matching (i.e., posi-
tive) pairs of patches from a single image frame may be
described as follows:

Algorithm for Extracting Matching Patches from a Single Image Frame

Inputs:

F: image frame

Q: quadrangle representing the document borders in the image frame in the input basis

Nb: quadrangle representing the document borders in the image frame in the normalized basis

R: set of rectangles in the normalized basis

Output:

Y: set of pairs of image patches

compute transformation matrix T: Q → Nb;

compute scale s ←
AQ

ANb
as a ratio of the area of Q to the area of Nb;

compute normalized document image D by applying T to F;

execute a keypoints detection algorithm (see Ref24) on D to get a set of keypoints

K ← { (x, y, size)} ∈ D;

remove keypoint from K that do not lie inside at least one rectangle in R;

foreach keypoint ki = (x, y, size) ∈ K do

k'i ← (x'i, y'i, size'i) in which (x'i, y'i) ← T−1(xi, yi), size' ← size • s;

extract aligned image patches (Pi, P'i) for keypoints ki from D and k'i from F;

Y ← Y ∪ (Pi, P'i, Ii) in which Ii = 1;

end

US 12,456,321 B2

15 16

5

10

15

20

25

30

35

In the above algorithm, the input parameters Nb and R are
specific to the document type. Quadrangle Nb defines the
document coordinates in a fixed-size normalized basis in
which a document occupies the entire image plane. The size
of the normalized basis is computed according to the physi-
cal sizes of the document type, for example, to ensure that
1 physical millimeter occupies 10 pixels. For example, the
physical width and height of the alb.id template are 85.6 and
54 millimeters, respectively, such that the dimensions of the
normalized basis were 856 pixels by 540 pixels. The set of
rectangles R comprises document regions containing per-
sonal data. The filtering of keypoints by rectangles in the
algorithm was done to avoid potential overfitting. It is
assumed that the document model to be used in template-
matching process 200 for a given document is built from the
points of the static elements of the document type (e.g., field
labels that do not change across different instances of the
document type).

To complete the dataset of aligned patches, non-matching
(i.e., negative) pairs of patches were added using the well-
known Brown dataset (see Ref40). A single negative pair of
patches was obtained by randomly sampling a patch from Y
and a patch from the set of 500,000 patches in the Brown
dataset. All of the patches from Y that were used in a
negative pair of patches were removed from the positive
pairs of patches in Y. The resulting dataset of positive and
negative pairs of patches were divided into three subsets:
75,000 pairs for features training; 75,000 pairs for features
selection (e.g., to be used as input set M in algorithm 500);
and 350,000 pairs for testing. Each of the three subsets was
balanced (i.e., consisted of 50% positive pairs and 50%
negative pairs) and did not intersect with any of the other
two subsets. FIG. 6 depicts exemplary pairs of patches from
the dataset, with the top row depicting positive pairs and the
bottom row depicting negative pairs. The dataset may be
structured and indexed in a similar manner to the Brown
dataset, as described in Ref40.
3.2. Training and Selection of Features

In the implementation for experimental purposes, the
feature descriptors were computed from square images of 32
by 32 pixels. While millions of rectangles R may be gen-
erated from such an image, a huge number of them are
usually highly correlated (see Ref16). The particular imple-
mentation generated rectangles with sides that were greater
than or equal to 3 pixels in length and with areas less than
or equal to 256 pixels. Threshold fitting was performed on
the set of patches Y. To ensure compactness and increase the
speed by which pairs of descriptors were compared (e.g.,
binary classifiers h and h' in algorithm 500), the maximum
number N of selected features was limited to 192 (i.e.,
N=192). In addition, the threshold tc was fixed to 0.7, since
smaller values of tc did not allow the selection of 192
features, whereas greater values of tc led to less discriminant
descriptors and demonstrated slightly worse performance.
3.3. Performance of Patches Verification

As mentioned above, a subset of 350,000 pairs of patches
was used for testing the disclosed feature descriptor, which
may be referred to herein as “RFDoc.” All experimental
results were obtained using OpenCV. FIG. 7 illustrates the
receiver operating characteristic (ROC) curves for the dis-
closed RFDoc binary descriptor and several state-of-the-art
binary descriptors, including the most efficient state-of-the-
art binary descriptor for arbitrary image matching, BEBLID-
512 (see Ref33). In the legend of FIG. 7, the amount of bits
required to store a keypoint representation and the error rate
to provide a 95% true positive rate (TPR) are indicated next
to the name of the binary descriptor. For example, the

disclosed RFDoc binary descriptor required 192 bits to store

each keypoint representation and had an error rate of 0.208%

for 95% TPR.

3.4. Performance in Complex Camera-Based Document

Recognition

To explore the performance of the disclosed RFDoc

descriptor in the context of complex identity document

location and classification, the approach proposed in Ref6

was evaluated on the remaining forty document types in the

MIDV datasets (i.e., the document types not used for cre-

ating the dataset used for patch verification). However,

unlike the approach in Ref6, brute-force matching was used,

instead of Fast Library for Approximate Nearest Neighbors
(FLANN), to achieve reproducible results and to exclude
potential collisions caused by an approximate nearest neigh-
bors search. In addition, the restrictions from Ref6 were not
used, since they were too strict for the MDV datasets. All the
parameters related to ideal template images, keypoint
extraction, and RANSAC were fixed according to the
description in Ref29. The algorithm for computing detection
performance was based on a calculation of the maximum
deviation of the computed coordinates for the document
corners, divided by the length of the shortest side of the
document borders (see Ref29). The SURF algorithm (see
Ref8) was used for keypoints extraction.

The results of experiments on the MIDV-500 dataset are
depicted in Table 1 below, and the results of experiments on
the MIDV-2019 dataset are depicted in Table 2 below. With
respect to MIDV-500, the disclosed RFDoc descriptor dem-
onstrated similar document classification and localization
performance to BEBLID-512, while being 2.65 times more
memory efficient. With respect to the more challenging
MIDV-2019, which includes extreme projective distortions
under low lighting, the disclosed RFDoc descriptor outper-
formed all of the state-of-the-art binary descriptors, while
demonstrating 21% fewer classification errors.

TABLE 1

Experimental Results on MIDV-500 Dataset

Rank Descriptor Classification Localization Bits

1 BEBLID-512 (see Ref33) 93.508 85.226 512

2 RFDoc 93.458 85.128 192

3 BEBLID-256 (see Ref33) 92.783 84.072 256

4 BinBoost-256 (see Ref38) 91.116 81.132 256

5 SURF (see Ref8) 91.241 82.783 2048

6 BinBoost-128 (see Ref38) 85.958 73.588 128

TABLE 2

Experimental Results on MIDV-2019 Dataset

Rank Descriptor Classification Localization Bits

1 RFDoc 88.875 75.535 192

2 BEBLID-512 (see Ref33) 85.854 75.001 512

3 BEBLID-256 (see Ref33) 83.833 72.368 256

4 BinBoost-256 (see Ref38) 79.916 63.074 256

5 SURF (see Ref8) 75.666 61.542 2048

6 BinBoost-128 (see Ref38) 68.791 50.262 128

3.5. Memory Consumption
Table 3 below depicts the amount of memory required to

index the feature descriptors, with the OpenCV brute-force
matcher, for the fifty document types in MIDV-500. As
shown, the disclosed RFDoc descriptor is more memory
efficient than BEBLID-512. If the number of document

US 12,456,321 B2

17 18

5

10

15

20

25

30

35

40

45

50

55

60

65

types is scaled to the number supported by industrial rec-

ognition systems (e.g., two-thousand document types), this

difference in memory efficiency can become critical.

TABLE 3

Amount of Memory Required to Index

Descriptors of MIDV-500 Templates

Memory Memory

Descriptor Bits unpacked (MB) packed (MB)

RFDoc 192 8.6 2.2

BinBoost-128 (see Ref38) 128 5.8 1.4

BinBoost-256 (see Ref38) 256 11.5 2.9

BEBLID-256 (see Ref33) 256 11.5 2.9

BEBLID-512 (see Ref33) 512 22.7 5.9

SURF (see Ref8) 2048 82.0 23.6

3.6. Matching Speed

It is difficult to reliably assess the impact of the type of

descriptors on the matching speed of template-matching

process 200. The matching speed is affected by the com-

plexity of the descriptor computation, the descriptor com-
parison metric, the descriptor’s data type, the number of
document templates in database 242, and the like. Thus, the
overall matching times of different types of descriptors,
implemented with different degrees of code optimization,
were not compared. Instead, the influence of different types
of binary descriptors on the matching speed was evaluated,
in terms of the number of CPU instructions required to
calculate the distance between a pair of descriptors.

An important advantage of binary descriptors over integer
and real-valued descriptors is the ability to utilize Hamming
distance as a measure of similarity of a pair of descriptors.
The computation of Hamming distance can be implemented

with a bitwise XOR and population count instructions,

which are typically included in the instruction set of modern

processors.

One particular application of the disclosed RFDoc

descriptors is edge computing, such as in smartphones,

embedded systems, Internet of Thing (IoT) devices, and

other systems at the edge of the network. These edge

systems are typically built with a system on a chip (SoC).
Most modern systems on a chip implement x86-64,
Advanced Reduced Instruction Set Computing Machine
(ARM), or Microprocessor without Interlocked Pipeline

Stages (MIPS) architectures. These architectures provide

hardware instruction for population count (e.g., popcnt) with

a varying input width and processed width, as depicted in

Table 4 below. Processed width is the size of the element

inside an input data chunk for which the population count is

computed. The principal difference between the different

architectures is that the current basic x86-64 supports the

population count via a single hardware instruction, whereas

ARM and MIPS introduce the population count as part of

single instruction, multiple data (SIMD) extensions. Popu-

lation count is also supported on x86-64 via Advanced

Vector Extensions (AVX)-512 on modern CPUs.

TABLE 4

Hardware Support of Population Count Instruction

Input Processed

Architecture Instruction Width (bits) Width (bits)

x86-64 POPCNT 32/64 32/64

x86-64 (AVX-512) VPOPCNTW 128/256/512 16/32/64

ARM VCNT 64/128 8

MIPS PCNT 128 8/16/32/64

To appropriately compare the speed of calculating the

distance between different binary feature descriptors, the

following algorithm was used to compute the Hamming

distance, using x86-64 with AVX-512. If AVX-512 was not

used, P=L, and the 64-bit data chunks can be sequentially

processed with accumulation of the total Hamming distance.

Algorithm for Computing Hamming Distance using SIMD Extension

Input:

d0: first descriptor of length D bits

d1: second descriptor of length D bits

L: SIMD vector length in bits

P: processed width in bits

padd: an operation of pairwise addition of neighboring elements in a vector

Output:

H: Hamming distance between d0 and d1

h ← 0;

foreach i ∈ { 0,...,D/L-1} do

h[iL+L−1:iL] ← h[iL+L−1:iL] + popcnt(XOR(d0[iL+L−1:iL], d1[iL+L−1:iL]));

end

foreach i ∈ { 0,...,log2(L/P)-1} do

h ← paddi(h);

end

H ← h;

To accurately measure the performance of the algorithm,

the number of arithmetic logic units (ALUs) that are able to

perform each operation and their latency should be consid-

ered. However, for experimental purposes, the total number

of instructions was estimated, which corresponds to a case

with one ALU and the same execution time for all instruc-

tions. The numbers of instructions required to process a

fixed-size bit subset to calculate the Hamming distance for

different architectures and binary descriptors is depicted in

Table 5 below.

US 12,456,321 B2

19 20

5

10

15

20

25

30

60

65

TABLE 5

Number of Instructions to Compute

Hamming Distance on Common SOCs

x86-64 ARM MIPS

xor/popcnt/ xor/popcnt/ xor/popcnt/

Descriptor Bits add/total add/total add/total

RFDoc 192 3/3/2/8 2/2/5/9 2/2/2/6

BEBLID-256 256 4/4/3/11 2/2/5/9 2/2/2/6

BEBLID-512 512 8/8/7/23 4/4/7/15 4/4/4/12

BinBoost-128 128 2/2/1/5 1/1/4/6 1/1/1/3

BinBoost-256 256 4/4/3/11 2/2/5/9 2/2/2/6

As demonstrated, the Hamming distance computation

between a pair of RFDoc descriptors is more than two times

faster than the closest state-of-the-art binary descriptor in

terms of quality (i.e., BEBLID-512), and only slower than

the poorly performing BinBoost-128.

4. EXAMPLE EMBODIMENT

Embodiments of a memory-efficient feature descriptor for

identity document localization and classification have been

disclosed. A data-driven approach was used to build a

feature descriptor that is suitable for matching local key-

points from identity documents in the context of simultane-

ous document localization and classification on mobile

devices. In a first stage, features may be trained to be robust

to lighting changes. In a second stage, the best-performing

and most discriminant features may be selected to form a set

of classifiers that represent the disclosed feature descriptor

(RFDoc). To address the problem of limited computing

resources, the disclosed feature descriptor is binary rather

than real-valued.

A problem-specific dataset of aligned patches was

extracted from a subset of identity document types, repre-

sented in the MDV datasets, and used to train and test the

disclosed feature descriptor. The disclosed feature descriptor

demonstrated three times fewer errors in terms of the 95%

TPR metric than the state-of-the-art BEBLID-512 descriptor
for patches verification. In complex camera-based identity
document localization and classification on the MIDV-500
dataset, the disclosed feature descriptor performed similarly
to the BEBLID-512 descriptor, with just 5% more classifi-
cation errors, while being 2.65 times more memory efficient.
On the more challenging MIDV-2019 dataset, the disclosed
feature descriptor demonstrated the best performance with
21% fewer errors than the closest state-of-the-art binary
descriptor (i.e., BEBLID-512). Notably, it is possible to
further reduce the memory footprint of the disclosed feature
descriptor by reducing the total number of features included
in the descriptor (e.g., by reducing the maximum number N
of features). The disclosed feature descriptor may also be
applied to other tasks (i.e., other than identity document
localization and classification).

5. REFERENCES

Many of the following references have been referred to
herein, and all of the following references are incorporated
herein by reference as if set forth and full:
Ref1: ARM NEON documentation, available at developer-

.arm.com/architectures/instruction-sets/simd-isas/neon/
intrinsics.

Ref2: Intel Intrinsics Guide, available at software.intel.com/
sites/landingpage/IntrinsicsGuide/.

Ref3: MIPS SIMD documentation, available at www.mip-

s.com/products/architectures/ase/simd.

Ref4: Acharya et al., “A real-time implementation of sift

using GPU,” Journal of Real-Time Image Processing

14(2), 267-277 (2018).

Ref5: Arlazarov et al., “MIDV-500: a dataset for identity

document analysis and recognition on mobile devices in

video stream,” Computer Optics 43(5), 818-824 (October

2019), doi.org/10.18287/2412-6179-2019-43-5-818-824.

Ref6: Awal et al., “Complex document classification and

localization application on identity document images,”

14th International Association for Pattern Recognition

(IAPR) Int’l Conference on Document Analysis and Rec-

ognition (ICDAR), IEEE (November 2017), doi.org/

10.1109/icdar.2017.77.

Ref7: Balntas et al., “Pn-net: Conjoined triple deep network

for learning local image descriptors,” arXiv:1601.05030

(2016).

Ref8: Bay et al., “SURF: Speeded up robust features,”

European Conference on Computer Vision,” pp. 404-417,

Springer (2006).
Ref9: Bulatov et al., “Smart IDreader: Document recogni-

tion in video stream,” 14th IAPR ICDAR, 6:39-44 (2017),
doi.org/10.1109/icdar.2017.347.

Ref10: Bulatov et al., “MIDV-2019: Challenges of the
modern mobile-based document OCR,” 12th Int’l Con-
ference on Machine Vision (ICMV), 2019, Int’l Society
for Optics and Photonics (SPIE) (January 2020), doi.org/
10.1117/12.2558438.

Ref11: Calonder et al., “BRIEF: Binary robust independent
elementary features,” European Conference on Computer
Vision, pp. 778-792, Springer (2010).

Ref12: Dang et al., “A comparison of local features for
camera-based document image retrieval and spotting,”
Int’l Journal on Document Analysis and Recognition
(IJDAR), 22 (September 2019), doi.org/10.1007/s10032-
019-00329-w.

Ref13: Dang et al., “SSKRIF: Scale and rotation invariant
features based on spatial space of keypoints for camera-
based information spotting,” Int’l Conference on Content-
Based Multimedia Indexing (CBMI), pp. 1-6 (2018),
doi.org/10.1109/cbmi.2018.8516532.

Ref14: Dang et al., “SRIF: Scale and rotation invariant
features for camera-based document image retrieval,”
13th ICDAR, pp. 601-605 (2015), doi.org/10.1109/ic-
dar.2015.7333832.

Ref15: Das et al., “Document image classification with
intra-domain transfer learning and stacked generalization
of deep convolutional neural networks,” 24th Int’l Con-
ference on Pattern Recognition (ICPR), pp. 3180-3185,
IEEE (2018).

Ref16: Fan et al., “Receptive fields selection for binary
feature description,” IEEE Transactions on Image Pro-
cessing 23(6):2583-2595 (2014), doi.org/10.1109/
tip.2014.2317981.

Ref17: Goode, “Digital identity: solving the problem of
trust,” Biometric Technology Today, 2019(10):5-8 (2019),
doi.org/10.1016/S0969-4765(19)30142-0.

Ref18: Han et al., “Matchnet: Unifying feature and metric
learning for patch-based matching,” Proceedings of the
IEEE Conference on Computer Vision and Pattern Rec-
ognition, pp. 3279-3286 (2015).

Ref19: Harley et al., “Evaluation of deep convolutional nets
for document image classification and retrieval,” 13th
ICDAR, IEEE (August 2015), doi.org/10.1109/ic-
dar.2015.7333910.

US 12,456,321 B2

21 22

5

10

15

20

25

30

35

40

45

50

55

60

65

Ref20: Jaderberg et al., “Reading text in the wild with

convolutional neural networks,” Int’ Journal of Computer

Vision 116(1):1-20 (2016).

Ref21: Kumar et al., “Learning local image descriptors with

deep Siamese and triple convolutional networks by mini-

mising global loss functions,” Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR) (June 2016).

Ref22: Leutenegger et al., “Binary robust invariant scalable

keypoints,” Int’l Conference on Computer Vision, pp.

2548-2555, IEEE (2011).

Ref23: Lowe, “Object recognition from local scale-invariant

features,” Proceedings of the 7th IEEE Int’l Conference

on Computer Vision, vol. 2, pp. 1150-1157 (1999),

doi.org/10.1109/iccv.1999.790410.

Ref24: Lukoyanov et al., “Modification of YAPE keypoint

detection algorithm for wide local contrast range images,”

10th Int’l Conference on Machine Vision (ICMV), vol.

10696, pp. 305-312, SPIE (2018), doi.org/10.1117/

12.2310243.

Ref25: Puybareau et al., “Real-time document detection in
smartphone videos,” 25th IEEE Int’l Conference on
Image Processing (ICIP), pp. 1498-1502, IEEE (2018).

Ref26: Rublee et al., “An efficient alternative to SIFT or
SURF,” Int’l Conference on Computer Vision, pp. 2564-
2571, IEEE (2011).

Ref27: Schapire et al., “Improved boosting algorithms using
confidence-rated predictions,” Machine Learning 37(3):
297-336 (1999).

Ref28: Simo-Serra et al., “Discriminative learning of deep
convolutional feature point descriptors,” Proceedings of
the IEEE Int’l Conference on Computer Vision, pp. 118-
126 (2015).

Ref29: Skoryukina et al., “Fast method of ID documents
location and type identification for mobile and server
application,” ICDAR, IEEE (September 2019), doi.org/
10.1109/icdar.2019.00141.

Ref30: Skoryukina et al., “Memory consumption reduction
for identity document classification with local and global
features combination,” 13th Int’l Conference on Machine
Vision, vol. 11605, p. 116051G, SPIE (2021), doi.org.10/
1117/12.2587033.

Ref31: Skoryukina et al., “Impact of geometrical restrictions
in RANSAC sampling on the ID document classification,
” 12th ICMV, vol. 11433, p. 1143306, SPIE (2020),
doi.org/10.1117/12.2559306.

Ref32: Stankevièius et al., “Deep neural network-based
feature descriptor for retinal image registration,” IEEE
6th Workshop on Advances in Information, Electronic and
Electrical Engineering (AIEEE), pp. 1-4, IEEE (2018),
doi.org/10.1109/AIEEE.2018.8592033.

Ref33: Suárez et al., “BEBLID: Boosted efficient binary
local image descriptor,” Pattern Recognition Letters 133,
pp. 366-372 (May 2020), doi.org/10.1016/j.pa-
trec.2020.04.005.

Ref34: Tareen et al., “A comparative analysis of SIFT,
SURF, KAZE, AKAZE, ORB, and BRISK,” Int’l Con-
ference on Computing, Mathematics and Engineering
Technologies (iCoMET), pp. 1-10, IEEE (2018).

Ref35: Tian et al., “L2-net: Deep learning of discriminative
patch descriptor in Euclidean space,” Proceedings of the
IEEE CVPR (July 2017).

Ref36: Tong et al., “MA-CRNN: a multi-scale attention
CRNN for Chinese text line recognition in natural
scenes,” IJDAR 23(2):103-114 (November 2019),
doi.org/10.1007/s10032-019-00348-7.

Ref37: Tropin et al., “Improved algorithm of ID card detec-
tion by a priori knowledge of the document aspect ratio,”
13th ICMV, SPIE (January 2021), doi.org/10.1117/
12.2587029.

Ref38: Trzcinski et al., “Learning image descriptors with
boosting,” IEEE Transactions on Pattern Analysis and
Machine Intelligence 37(3):597-610 (March 2015),
doi.org/10.1109/tpami.2014.2343961.

Ref39: Viola et al., “Rapid object detection using a boosted
cascade of simple features,” Proceedings of the 2001
IEEE Computer Society Conference on CVPR, vol. 1, pp.
I-I, IEEE (2001).

Ref40: Winder et al., “Learning local image descriptors,”
IEEE Conference on CVPR, IEEE (June 2007), doi.org/
10.1109/cvpr.2007.382971.

Ref41: Zhu et al., “Coarse-to-fine document localization in
natural scene image with regional attention and recursive
corner refinement,” IJDAR 22(3):351-360 (2019).
The above description of the disclosed embodiments is

provided to enable any person skilled in the art to make or
use the invention. Various modifications to these embodi-
ments will be readily apparent to those skilled in the art, and
the general principles described herein can be applied to
other embodiments without departing from the spirit or
scope of the invention. Thus, it is to be understood that the
description and drawings presented herein represent a pres-
ently preferred embodiment of the invention and are there-
fore representative of the subject matter which is broadly
contemplated by the present invention. It is further under-
stood that the scope of the present invention fully encom-
passes other embodiments that may become obvious to those
skilled in the art and that the scope of the present invention
is accordingly not limited.

Combinations, described herein, such as “at least one of
A, B, or C,” “one or more of A, B, or C,” “at least one of A,
B, and C,” “one or more of A, B, and C,” and “A, B, C, or
any combination thereof” include any combination of A, B,
and/or C, and may include multiples of A, multiples of B, or
multiples of C. Specifically, combinations such as “at least
one of A, B, or C,” “one or more of A, B, or C,” “at least one
of A, B, and C,” “one or more of A, B, and C,” and “A, B,
C, or any combination thereof” may be A only, B only, C
only, A and B, A and C, B and C, or A and B and C, and any
such combination may contain one or more members of its
constituents A, B, and/or C. For example, a combination of
A and B may comprise one A and multiple B’s, multiple A’s
and one B, or multiple A’s and multiple B’s.

What is claimed is:
1. A method comprising using at least one hardware

processor to:
select a plurality of classifiers from a plurality of available

classifiers so as not to exceed a maximum threshold
number of classifiers, wherein selecting the plurality of
classifiers from the plurality of available classifiers so
as not to exceed the maximum threshold number of
classifiers comprises
computing an accuracy for each of the plurality of

available classifiers,
sorting the plurality of available classifiers in order of

computed accuracies,
adding one of the plurality of available classifiers

having a highest computed accuracy to an output set,
and

adding one or more additional ones of the plurality of
available classifiers to the output set, based on an
evaluation of a correlation to one or more classifiers
already in the output set, until either the output set

US 12,456,321 B2

23 24

5

10

15

20

25

30

35

40

45

50

55

60

65

contains the maximum threshold number of classi-
fiers or all of the plurality of available classifiers
have been evaluated;

extract a plurality of patches comprising keypoints in an
input image of a document;

for each of the plurality of patches,

construct a gradient map for a plurality of gradient
orientations within the patch,

apply the plurality of classifiers to a plurality of rect-
angles in the gradient map,

wherein each of the plurality of classifiers outputs a value,
and

generate a feature descriptor based on the values output
by the plurality of classifiers; and

compare the generated feature descriptors to each of a
plurality of templates to match the document to one of
the plurality of templates for document localization and
classification.

2. The method of claim 1, wherein the plurality of
classifiers are binary classifiers that each output a binary
value.

3. The method of claim 1, wherein constructing the
gradient map comprises computing gradient magnitudes
using an L1 norm.

4. The method of claim 1, wherein each of the plurality of
classifiers is applied to a different one of the plurality of
rectangles.

5. The method of claim 1, wherein adding one or more
additional ones of the plurality of available classifiers to the
output set comprises, while the output set contains less than
the maximum threshold number of classifiers, for each of the
plurality of available classifiers:

determining whether or not the available classifier is
correlated to the one or more classifiers already in the
output set;

when the available classifier is correlated to the one or
more classifiers already in the output set, excluding the
available classifier from the output set; and,

when the available classifier is not correlated to the one or
more classifiers already in the output set, adding the
available classifier to the output set.

6. The method of claim 5, wherein determining whether
or not the available classifier is correlated to the one or more
classifiers already in the output set comprises:

for each of the of one or more classifiers already in the
output set, comparing an output of the available clas-
sifier to an output of the classifier already in the output
set to determine whether or not the available classifier
is correlated to the classifier already in the output set;

when the available classifier is determined to correlate to
at least one of the one or more classifiers already in the
output set, determine that the available classifier is
correlated to the one or more classifiers already in the
output set; and,

when the available classifier is determined to correlate to
none of the one or more classifiers already in the output
set, determine that the available classifier is not corre-
lated to the one or more classifiers already in the output
set.

7. The method of claim 6, wherein comparing an output
of the available classifier to an output of the classifier
already in the output set comprises:

for each of a plurality of pairs of image patches,
for a first patch in the pair of image patches,

determine whether a classification that is output by
the available classifier matches a classification
that is output by the classifier already in the output
set,

when the classifications match, increment a match
counter, and

when the classifications do not match, increment a
no-match counter, and,

for a second patch in the pair of image patches,
determine whether a classification that is output by

the available classifier matches a classification
that is output by the classifier already in the output
set,

when the classifications match, increment the match
counter, and

when the classifications do not match, increment the
no-match counter;

compute a correlation value, between the available clas-
sifier and the classifier already in the output set, based
on a value of the match counter and a value of the
no-match counter;

when the correlation value satisfies a threshold, determin-
ing that the available classifier is correlated to the
classifier already in the output set; and,

when the correlation value does not satisfy the threshold,
determining that the available classifier is not corre-
lated to the classifier already in the output set.

8. The method of claim 7, wherein the correlation value
is calculated based on a ratio of a difference, between the
value of the match counter and the value of the no-match
counter, and a total number of the plurality of pairs of image
patches, and wherein the correlation value satisfies the
threshold when it is greater than the threshold and does not
satisfy the threshold when it is less than the threshold.

9. The method of claim 7, wherein the plurality of pairs
of image patches comprises pairs of matching image patches
and pairs of non-matching image patches.

10. The method of claim 7, further comprising using the
at least one hardware processor to extract the plurality of
pairs of image patches from a dataset comprising a plurality
of document images by, for each of one or more of the
plurality of document images:

identifying a first quadrangle representing document bor-
ders in the document image in an input basis;

identifying a second quadrangle representing document
borders in the document image in a normalized basis;

identifying a set of rectangles in the document image
according to the normalized basis;

computing a transformation matrix between the first quad-
rangle and the second quadrangle;

computing a scaling value as a ratio of an area of the first
quadrangle to an area of the second quadrangle;

computing a normalized document image by applying the
transformation matrix to the document image;

executing a keypoints detection algorithm on the normal-
ized document image to obtain a set of keypoints;

removing any keypoints, from the set of keypoints, that
are not within at least one rectangle in the set of
rectangles;

for each keypoint remaining in the set of keypoints,
computing a corresponding keypoint in the document

image in the input basis, based on the scaling value
and an inverse of the transformation matrix,

extracting a first image patch for the keypoint from the
normalized document image,

US 12,456,321 B2

25 26

5

10

15

20

25

30

35

40

45

50

55

60

65

extracting a second image patch for the corresponding

keypoint from the document image in the input basis,

and

adding the first image patch and the second image patch

as a matching pair of image patches to an output set;

and

output the output set as the plurality of pairs of image

patches.

11. The method of claim 10, further comprising using the

at least one hardware processor to randomly select the one

or more document images from the plurality of document

images in the dataset.

12. A method comprising using at least one hardware

processor to:

during a training phase,

extract a plurality of pairs of image patches from a

dataset comprising a plurality of document images

by, for each of one or more of the plurality of

document images,

identifying a first quadrangle representing document

borders in the document image in an input basis,
identifying a second quadrangle representing docu-

ment borders in the document image in a normal-
ized basis,

identifying a set of rectangles in the document image
according to the normalized basis,

computing a transformation matrix between the first
quadrangle and the second quadrangle,

computing a scaling value as a ratio of an area of the
first quadrangle to an area of the second quad-
rangle,

computing a normalized document image by apply-
ing the transformation matrix to the document
image,

executing a keypoints detection algorithm on the
normalized document image to obtain a set of
keypoints,

removing any keypoints, from the set of keypoints,
that are not within at least one rectangle in the set
of rectangles,

for each keypoint remaining in the set of keypoints,
computing a corresponding keypoint in the docu-

ment image in the input basis, based on the
scaling value and an inverse of the transforma-
tion matrix,

extracting a first image patch for the keypoint
from the normalized document image,

extracting a second image patch for the corre-
sponding keypoint from the document image in
the input basis, and

adding the first image patch and the second image
patch as a matching pair of image patches to an
output set, and

outputting the output set as the plurality of pairs of
image patches, and

train a plurality of classifiers using the extracted plu-
rality of pairs of image patches; and

during an operation phase,
extract a plurality of patches comprising keypoints in

an input image of a document,
for each of the plurality of patches,

construct a gradient map for a plurality of gradient
orientations within the patch,

apply the plurality of classifiers to a plurality of
rectangles in the gradient map, wherein each of
the plurality of classifiers outputs a value, and

generate a feature descriptor based on the values

output by the plurality of classifiers, and

compare the generated feature descriptors to each of a

plurality of templates to match the document to one

of the plurality of templates for document localiza-

tion and classification.

13. The method of claim 1, further comprising using the

at least one hardware processor to:

prior to extracting the plurality of patches,

receive the input image, and

identify the keypoints in the input image; and,

after comparing the generated feature descriptors to each

of the plurality of templates,

when the document is matched to one of the plurality

of templates, localize and classify the document

based on the matching template, and,

when the document is not matched to any of the

plurality of templates, reject the input image.

14. The method of claim 13, wherein the at least one

hardware processor is comprised in a mobile device, and

wherein the input image is captured by a camera of the
mobile device.

15. A system comprising:
at least one hardware processor; and
one or more software modules that are configured to,

when executed by the at least one hardware processor,
select a plurality of classifiers from a plurality of

available classifiers so as not to exceed a maximum
threshold number of classifiers, wherein selecting the
plurality of classifiers from the plurality of available
classifiers so as not to exceed the maximum thresh-
old number of classifiers comprises
computing an accuracy for each of the plurality of

available classifiers,
sorting the plurality of available classifiers in order

of computed accuracies,
adding one of the plurality of available classifiers

having a highest computed accuracy to an output
set, and

adding one or more additional ones of the plurality of
available classifiers to the output set, based on an
evaluation of a correlation to one or more classi-
fiers already in the output set, until either the
output set contains the maximum threshold num-
ber of classifiers or all of the plurality of available
classifiers have been evaluated,

extract a plurality of patches comprising keypoints in
an input image of a document,

for each of the plurality of patches,
construct a gradient map for a plurality of gradient

orientations within the patch,
apply the plurality of classifiers to a plurality of

rectangles in the gradient map, wherein each of
the plurality of classifiers outputs a value, and

generate a feature descriptor based on the values
output by the plurality of classifiers, and

compare the generated feature descriptors to each of a
plurality of templates to match the document to one
of the plurality of templates for document localiza-
tion and classification.

16. A non-transitory computer-readable medium having
instructions stored therein, wherein the instructions, when
executed by a processor, cause the processor to:

select a plurality of classifiers from a plurality of available
classifiers so as not to exceed a maximum threshold
number of classifiers, wherein selecting the plurality of

US 12,456,321 B2

27 28

5

10

15

20

25

30

35

40

45

50

55

60

65

classifiers from the plurality of available classifiers so
as not to exceed the maximum threshold number of
classifiers comprises
computing an accuracy for each of the plurality of

available classifiers,
sorting the plurality of available classifiers in order of

computed accuracies,
adding one of the plurality of available classifiers

having a highest computed accuracy to an output set,
and

adding one or more additional ones of the plurality of
available classifiers to the output set, based on an
evaluation of a correlation to one or more classifiers
already in the output set, until either the output set
contains the maximum threshold number of classi-
fiers or all of the plurality of available classifiers
have been evaluated;

extract a plurality of patches comprising keypoints in an
input image of a document;

for each of the plurality of patches,
construct a gradient map for a plurality of gradient

orientations within the patch,
apply the plurality of classifiers to a plurality of rect-

angles in the gradient map, wherein each of the
plurality of classifiers outputs a value, and

generate a feature descriptor based on the values output
by the plurality of classifiers; and

compare the generated feature descriptors to each of a
plurality of templates to match the document to one of
the plurality of templates for document localization and
classification.

∗ ∗ ∗ ∗ ∗

US 12,456,321 B2

29 30

5

10

15

20

25

30

